Treatise: Abandoning OldSpace’s Conceit

Should this be considered space exploration?  "Pilot Felix Baumgartner jumps out from the capsule during the final manned flight for Red Bull Stratos in Roswell, New Mexico, USA on October 14, 2012." (Credit: Red Bull Stratos)
Should this be considered space exploration? “Pilot Felix Baumgartner jumps out from the capsule at 126,720 feet during the final manned flight for Red Bull Stratos in Roswell, New Mexico” (Credit: Red Bull Stratos)

Space Exploration is suffering an identity crisis.

Like atmospheric flight before it, space exploration is evolving to include a spectrum of public and private participants, motivations, and goals.  However, even amongst space enthusiasts and professionals, there is much (mostly friendly – I’ll get to that) debate regarding just what exactly it is that qualifies as worthy space exploration.

This debate tends to set itself up in terms of convenient binaries:

Human or robotic?  Public or commercial?  Lunar or Martian?  To seek out an asteroid where it orbits or capture one and bring it back to us?  (There are many more…)

Determining who or what is qualified (or makes someone qualified) to wear the title of “astronaut” and engage in space exploration seems to be the source of much of any contention amongst engaged parties.  And, in certain corners, the resulting conversation tempestuously swirls around whether or not some current private efforts to reach space even qualify as exploration at all.

With this in mind, and before the conceptual landscape becomes any more confusing or inconsistent, let’s take a detailed journey through the convoluted and fascinating history of just what it means to explore space and – not always coincidentally – to be considered a space explorer.

In this way, a new appreciation of the promise and potential of so-called NewSpace activities might be produced – one that thwarts brewing, (and in my opinion, shortsighted), negative bias amongst those in the established space exploration community…

Apollo 17 Lunar Module cabin interior after day 3 on the lunar surface: Helmets and space suits on the engine cover at left with Astronaut Gene Cernan looking on.  (Credit: NASA)
Apollo 17 Lunar Module cabin interior after day 3 on the lunar surface (12/13/72): Helmets and space suits piled on the engine cover with astronaut Gene Cernan at right. (Credit: NASA)

Deconstruction of the Space Explorer

It used to be considered that human beings had to bodily participate, a la the Lewis and Clark Expedition, in order for something to be considered “exploration.”  In this light, robotic space missions were once seen only as tantalizing forerunners to the delivery of human bootprints, when the real exploration began.

Now, however, based in part on funding, politics, and the march of technology, the robots have claimed much of the exploration center stage as competent cosmic surveyors, jaw-dropping photographers, and even mobile geologic laboratories.

While not autonomous, their successes have led many to seriously question whether human beings will ultimately have a primary role in space exploration, if any significant role at all.

Meanwhile, those who still endorse human ingenuity and adaptability as key components for space exploration face a simultaneous conceptual quandry.  Once something clearly defined in nationalistic terms, (and intentionally invoking, let’s be honest, Greek-demigod-like associations), the conceptual waters of the 21st century human space explorer have also been permanently muddied.

jsc2006e40638
Spaceflight participant Anousheh Ansari prior to her launch to the Int’l Space Station aboard a Soyuz spacecraft, 11/’06. (Credit: NASA)

Anyone who crosses the invisible and somewhat arbitrary 62-mile altitude line to “outer space” can be honestly called an “astronaut.”  However, a healthy handful of space tourists are now included in the fold of human beings who have crossed the threshold to space to become astronauts.  To make the landscape even more confusing, many have advised (NASA included) that out of respect and/or accuracy we should refer to these self-funded astronauts as “spaceflight participants,” not tourists.

So, are these participants to be considered explorers in their own right even if they are not considered career astronauts?  Or are they simple sightseers along for the ride with the true explorers?

Is or can there be a difference between a spaceflight participant and a tourist or sightseer?

Astronaut-Explorer: Still Synonymous?

Whatever the semantics dictate, with hundreds of additional, willing, and self-funded future astronauts waiting in the wings, it is reasonable to ask whether or not being an “astronaut” even implies space exploration anymore.

Is it the intent of the trip or tasks to be performed that is or are the key distinguishing factors between thrill-seeking and exploration, (i.e., is science to be performed)?  This might be a sensible definition, yet in asking this question it is noteworthy to point out that many of the astronaut-spaceflight-participants have performed scientific work while in space.

Despite this fact, many in the what I like to call the “OldSpace” community, (namely current or former NASA employees and contractors with a more traditional view of space exploration), balk at the idea that these participants represent legitimate space exploration.  This seems to imply that it is only professional astronauts that are to be considered the explorers.

However, the logic of making such a distinction quickly falls apart when considering the countless private expeditions throughout human history that have opened continents, frontiers, and knowledge to human awareness.

So, this is my first point.  We’re woefully vague when it comes to describing those who travel to or work in space.

Peering more deeply into the issue, one of the primary issues is the qualification of someone to become an astronaut.  Right now, by strict definition all it takes is a suitable increase in altitude for someone to earn their astronaut wings.

Is this an accurate or meaningful way to define an astronaut in the first place?  (Or do we need a new or different definition altogether?)

The nose of the Gemini-9A spacecraft over the Pacific Ocean during the second spacewalk in NASA history, on 5 June 1966.  (Credit: NASA)
The nose of the Gemini-9A spacecraft over the Pacific Ocean during the second spacewalk in NASA history, on 5 June 1966. (Credit: NASA)

Where is Space, Anyway?

Like a poorly-woven sweater, the more one pulls on this thread of questioning, the faster the whole thing unravels.  Consequently, it may be here that we find the clearest junction from which the many different views of space exploration begin to diverge.

Classically, “outer space” is considered the region encompassing the rest of the universe beyond the Earth’s atmosphere.  That’s simple enough.

However, we now know that the most rarefied portions of the Earth’s atmosphere (exosphere) extend out to more than 62,000 miles away from the Earth’s surface(!), while the more conventional uppermost portions of the atmosphere extend to 200-500 miles in altitude (thermosphere).  Yet at all of these fringe heights, the atmosphere is still little more than individual atoms zipping around a vacuum, separated from one another by so great a distance that they are practically indistinguishable from outer space.

To make matters more impractical, these altitudes vary by several hundred miles depending on how much solar activity is warming up the atmosphere at the time.

Expedition7EarthAtmosphere
View of Earth’s horizon as the sun sets over the Pacific Ocean as seen from the Int’l Space Station. (Credit: NASA)

So, where do we draw that magic line separating atmosphere from space?  Let’s take a look at the reality from the ground up ourselves (so-to-speak),  and you can decide whether or not you would have placed the dividing line to “space” where current convention has drawn it:

  1. Humans can generally function well without supplemental oxygen to an altitude of roughly two miles above sea level, or 10,000 feet.  I don’t believe any reasonable argument can be made that any region located hereabouts represents “outer space.”
  2. However, by the time one reaches little more than three times that, (at 36,000 feet, or 7 miles in altitude – the cruising flight altitude of most commercial airline traffic), not only would a would-be explorer require supplemental oxygen, be he or she has (surprisingly) already emerged from three-quarters of the bulk of the Earth’s atmosphere.  (That’s 75% of the way to space by mass!)
  3. By the time one reaches 12 miles in altitude or about 62,000 feet, (a.k.a., the Armstrong Line), In addition to oxygen, a pressure suit is absolutely required in order to prevent the moisture in one’s mouth, throat and lungs from boiling away due to the low pressure.  (Sounds awfully space-y.  Are we there, yet?)
  4. The atmospheric layer known as the stratosphere extends upwards to 170,000 feet, or 32 miles, and contains the planet’s ozone layer.  This is now a height that is above all but rarest, upper-atmospheric clouds.
  5. From there to roughly 50 miles (264,000 feet) is the Earth’s mesosphere, the region of the atmosphere where most meteors burn up upon entry due to friction with the atmosphere.  (Does the fact that meteors really encounter the atmosphere here mean that this is the real boundary to space?  Or are we already there?)
  6. The thermosphere extends from there to an average of 300 miles (1,584,000 feet) in altitude, where atoms in the atmosphere can travel for the better part of a mile before running into one-another.  The International Space Station is located within this layer, and I don’t think anyone would argue that we’re now definitely in “outer space.”

Where would you put the dividing line?

Current international convention, known as the “Kármán Line,” places it at 62 miles in altitude, or roughly 330,000 feet.  That’s out of the mesosphere and just peeking into the thermosphere.

Confusingly, however, (and perhaps unsurprisingly after reading the above), the U.S. has separately defined an astronaut as anyone who reaches an altitude greater than 50 miles, or 264,000 feet, in altitude.

Captain Joe Engle is seen here next to the X-15-2 rocket-powered research aircraft after a flight. Three of Engle's 16 X-15 flights were above 50 miles, qualifying him for astronaut wings under the Air Force definition.  Engle was later selected as a NASA astronaut in 1966, making him the only person who was already an astronaut before being selected as a NASA astronaut. (Credit: NASA)
Captain Joe Engle, a living example of the inconsistency surrounding use of the term “astronaut,” standing next to the X-15 research rocketplane. Three of Engle’s sixteen X-15 flights were above 50 miles, qualifying him for astronaut wings under the Air Force definition, and Engle was later selected as a NASA astronaut in 1966. This makes him the only person in history who was technically already an astronaut before being hired as a NASA astronaut. (Credit: NASA)

Been There, Flown That?

According to current convention, one needs to cross either 50 or 62 miles in altitude to reach space.  Yet the above altitude list demonstrates that what most would refer to as a spacesuit (a pressure suit) is required by anyone attempting even 1/5th that altitude.

Clearly, walking through the above exercise demonstrates that the human experience of “outer space” is reached far lower in altitude than these conventions currently dictate.  Further, it’s clear to see that a would-be astronaut has escaped more than 90% of the atmosphere by mass well before reaching the Kármán Line.

(To reiterate, this is a rub even between the U.S. and international bodies, whose definitions of the dividing line to space differ by more than 63,000 feet!).

Hence, this is where serious debates about space exploration begin.  For example, when private spacecraft aim to achieve suborbital spaceflight altitudes of 40 miles, such as XCOR Aerospace’s Lynx Mark I, they do not currently break through either the U.S. space line or the Kármán Line.  Consequently, any passengers aboard cannot be technically called “Astronauts” by the most generally-accepted definition of the term.

13-02-13_lynx-hotfire-5885-mod
XCOR XR-5K18 “Lynx” main engine test on the flight weight fuselage. The Lynx Mark I is designed to achieve an altitude of 200,000 feet, or roughly 40 miles. (Credit: XCOR Aerospace)

However, as anyone can see in the above list of altitudes and physical characteristics, 40 miles above Earth not only has long achieved the human experience of “space,” but it skirts the boundary above which even meteors pass by at many tens of kilometers per second (where entry friction would make even a sparse but significant atmosphere quickly known) without noticing anything appreciable.

Outer space, indeed!

However, particularly, from the OldSpace corner, I’ve personally detected the prevalent sentiment that since this sort of travel doesn’t even reach “space,” it therefore could not possibly be considered exploration, much less fruitful exploration.  Even those private efforts that do breach the Kármán Line are often scoffed at as repeats of old triumphs and rejected under nearly the same pretense.

So, in an effort to thwart what I see as burgeoning (and perhaps  unconscious) resentment within the more traditional segments of the space establishment with respect to new, private space technology, projects, and the human travelers that will utilize them, let’s delve further toward the heart of this identity crisis.

While the advent of space tourism (or participant-ism) began in the early 2000s, it is with one specific event that to my heuristic eye the socio-technical deconstruction of our once-clean concept of the human space explorer truly began:

The 2004 clinching of the Ansari X Prize by the private flights of Virgin Galactic‘s SpaceShipOne.

SpaceShipOne released from the White Knight mothership beneath a crescent moon. (Credit: Scaled Composites/SpaceDaily)
SpaceShipOne released from the White Knight mothership beneath a crescent moon. (Credit: Scaled Composites/SpaceDaily)

Suborbital: Not Space Enough?

Objectors to the idea that spaceflights like that performed by SpaceShipOne can be considered fruitful space exploration point out that SpaceShipOne was only a suborbital spaceplane, boasting speeds far less than those required to reach orbital velocity.

(Translation:  Suborbital spacecraft only have enough steam to peek out into officially-defined space for a few minutes before falling back to Earth.  In contrast, bigger spacecraft, like NASA’s former Space Shuttle or SpaceX’s Dragon, can power all the way up to orbital speed and remain in space until they choose to slow down and fall back to Earth or are slowly brought down by atoms in the sparse upper-atmosphere.)

Further, these objectors often and rightfully point out that these very low-altitude portions of outer space, referred to collectively as “suborbital space,” have already been traversed hundreds of times by astronauts.  (Indeed, more than 250 times during the Space Shuttle Program alone.)

SpaceShipOne’s achievement itself was a modern replication of the 1960s’ X-15 Program, the pioneer rocketplane that produced the world’s first astronauts and gathered invaluable research for NASA’s Mercury, Gemini, Apollo, and Space Shuttle programs.

Hence, arguments against the concept of private suborbital space exploration typically conclude that, with all of this in mind, there’s no more exploration to suborbital spaceflight than driving down a paved road.  Suborbital spaceflight participants are therefore not explorers, nor can what they engage in while there be called space exploration.

Particularly amongst the old guard of space science, “exploration” is therefore reserved for those pushing the frontier in higher orbits, cislunar space, trips to near-Earth asteroids, Mars, and beyond.

Astronaut pilots Brian Binnie (left) and Mike Melvill helped Burt Rutan win the $10 million Ansari X Prize by completing two manned space flights within two weeks, each piloting SS1.  (Credit: Virgin Galactic)
Astronaut pilots Brian Binnie (left) and Mike Melvill. (Credit: Virgin Galactic)

However, before throwing in the towel on 21st century suborbital space exploration, we must address the reality that SpaceShipOne managed to privately achieve what until that time had only been accomplished by global superpowers – no small feat!  Further, it was a feat that led the FAA to award the first (and so far, the only) commercial astronaut spaceflight wings to pilots Brian Binnie and Mike Melvill.

Surely they can therefore be considered pioneers, and exploration seems a fitting term for their achievement.

Peeling the veil farther back, it’s true that so-called space tourists began purchasing trips to the Mir space station and then to the International Space Station as far back as 2001.  In order to participate, these private space adventurers had to endure and successfully complete the very same training as their Russian cosmonaut counterparts.

The intriguing question that follows is this: If what government-sponsored astronauts were engaged in was and is considered to be legitimate exploration, wouldn’t by extension the same label apply to all on the same voyage assisting in the same work?  If someone were to have purchased their way aboard Shackleton’s Endurance, would they be considered any less an explorer today?

Of course not.

Then, what of our oceans as a parallel?  They have been traversed hundreds of thousands if not millions of times in the last several centuries.  Does this mean that no exploration may be conducted on the Earth’s oceans in the 21st century?

Surely not.  Context is key.  (One may explore climate effects, seek out undiscovered ecological niches, probe poorly-mapped coastlines, explore archaeological evidence of our past activities, wield new technology to tease new data from an old environment, and that’s not even scratching the ocean’s subsurface…)

Just so, objections to suborbital spaceflight as legitimate space exploration logically fall apart.  In even greater degree than with Earth’s oceans, there is ample room and conceptual research justifications for the legitimate continued exploration of suborbital space.

So what’s the real issue here?  Why is there any resistance at all?

Evolution.

Or, more specifically, how we as a culture always tend to get evolution wrong.

An evolutionary path of spaceflight depicted.  (Credit: Virgin Galactic)
A depicted evolutionary path of spaceflight. (Credit: Virgin Galactic)

Getting Evolution Wrong, or

“How I Learned to Stop Worrying and Love NewSpace”

As a geologist, I’ve become very sensitive to a sort of teleological conceit that people tend to carry into the common understanding of biological evolution.  In other words, people tend to incorrectly believe that life evolves toward something.

We culturally call something that is more advanced more evolved, and we characterize something unsophisticated to be less evolved or primitive.  When something loses ground, we even say that it has devolved.

Well, much as the term “theory” is almost universally misused compared to the scientific meaning of the term, (people usually mean that they have a “hypothesis” when they say they have a “theory”), the terms “evolved” and “primitive” are fairly universally misused and misunderstood.

They’re relative terms, not universal terms.

One could paraphrase this misunderstanding by assessing the belief that there was a sort of biological, evolutionary destiny for algae – that given enough time and opportunity, the little, green “organism that could” would eventually evolve to become a human being.

This, in turn, reasonably translates to a belief that we as humans are more “advanced” than algae, and that we’re therefore “better” than algae.

One of the International Space Station solar arrays, which converts sunlight to energy.  (Credit: NASA)
One of the International Space Station solar arrays, which converts sunlight to energy. (Credit: NASA)

Many are consequently shocked to learn that all of these beliefs are untrue, based on a series of logical fallacies.  Science, quite surprisingly, shows us that quite the opposite is true.  Life will evolve in any number of convenient directions, even those that seem backwards to our modern perceptions.

Yes, human beings benefit from large brains, acute stereoscopic vision, and an uncanny ability to communicate, which we have wielded to our great advantage.  Algae cells possess none of these tools.  However, algae can convert sunlight into sugar using only a modest supply of water and carbon dioxide.  Our best attempts to use our “advanced” brains to perform this very same and ancient task have failed to come within even a fraction of li’l algae’s efficiency.  (Would that human beings achieve this apparently “primitive” feat, the human civilization would have permanently solved the social issues of hunger and starvation!  …That’s fairly “advanced” biological processing, if you asked me.)

So, by which yardstick are we to define “advanced”?  Conceit leads us to select our own attributes as more advanced, yet this is not scientific.  It’s arbitrary.

For a more specific example, the fossil record reveals in several instances that seaborne life, adapting to a changing and increasingly food-rich land surface, eventually (over the course of thousands or tens of thousands of generations) made feet of fins and took hold on land.  However, this same land-based life, under reverse pressure for food back toward the sea, over time reversed the trend and converted its feet back to fins once again.

The erroneous interpretation here, (like assuming that we’re more advanced than algae), is that feet are more advanced than fins.  The reality is that they are simply different biological tools that may be used, abandoned, and returned to if necessary or useful.

“More evolved” simply tracks the progression of evolution forward through time, whereas “more primitive” describes a rung in an organism’s ancestry.

(It is perfectly reasonable, then, in the reverse-adaptation scenario mentioned above, to have a situation where fins are more evolved than feet!)

In short, we see that instead of propelling itself toward a single destiny, life is flexible.  It responds to the pressures of the outside world, wherever they lead.  Evolution, therefore, is not so much the story of the noble rise of algae to one day become more “advanced” animal life to one day become even more advanced human beings who might one day build rockets to explore the stars…  Instead, biological evolution is a complex, daunting, nonlinear story of life surviving at any cost; adapting to any niche it can, and capitalizing to its fullest on whatever biological skills were close at hand.

So, too, is the same error present with our perception of spaceflight and space exploration.  As a modern, parasitic sort of conceit tagging along with our understanding of space history, we presume a linear destiny has been in play, when in fact it has not.

The original image above, a logo occasionally promoted by Virgin Galactic, intentionally relates evolution to spaceflight.  Ironically, it plays to both the incorrect and correct views of evolution.

People tend to view space exploration itself as a teleological journey toward more distant and exotic locations, describing it in apropos biological terminology as a migration of life toward a destiny amongst the stars, to new colonies, etc.

MarchofProgressThis is a feeling certainly visually-evoked by the above image of evolving spacecraft, a nod to the famous “March of Progress” illustration of 1965 simplified at right.  However, this view relies on the conceit that farther distances are more advanced or “better” than short-range flights.  When looking at the facts, this simply isn’t the case.

For instance, a phone in a pilot’s pocket aboard SpaceShipOne would have had literally thousands of times the computing power of the Apollo Lunar Module (LM) guidance computer, (to say nothing of SpaceShipOne’s onboard instrumentation).  SpaceShipOne, also leveraging new developments in the technology of aerodynamics, composite materials, GPS location and tracking, and with the novel innovation of a feathered wing configuration for reentry, was a much more technologically-advanced spacecraft than the LM.

The LM, it is also true to say, could not possibly have successfully produced aerodynamic lift or had enough thrust to land on the Earth, two feats SpaceShipOne performed with apparent ease.  But SpaceShipOne only poked its head out into space, whereas the LM both landed on and departed from the moon while enabling its passengers to perform extra-vehicular activities – all impossible feats for SpaceShipOne.

So, by which yardstick do we define “advanced”?  Here, our same algae/human conceit rears its head.  But clearly, destination and the level of technological advancement of a spacecraft are not related.  They are simply different.

In fact, looking more closely at the above diagram, this truth is actually captured.  An observer will note that the second to the last, most “evolved” spacecraft is actually the LM.  The final step in the sequence is SpaceShipOne, a ship whose maximum designed altitude does not come within 0.03% of the distance to the Moon.

It is this conceit, I believe, that is also at the heart of OldSpace’s reluctance to (or perhaps even resentment of) embracing private space exploration efforts and those who engage in them as space explorers.  We don’t like the messy version of evolution.

We prefer our teleology.

070326_bigelowview_hmed_10a.grid-6x2
Bigelow Aerospace’s Genesis 1 orbital module, a first-of-its-kind inflatable spacecraft boasting superior micrometeorite resistance than rigid modules. (Credit: Bigelow Aerospace)

Evolving Our View of Space Exploration

In almost back-to-back recent events, what to me is an example of the true nature of the conflict between the many colliding conceptions of astronauts, space explorers, and space exploration was brought into sharp relief:

On the one hand, a NASA historian who I greatly respect alleged to me that private suborbital spaceflight and even new, commercial orbital space modules and transportation systems (which have recently received NASA funding to enhance the U.S. space infrastructure and give scientists more platforms and opportunities to conduct research),  were patently unworthy of NASA dollars.

Existing Russian and U.S. systems should be relied upon, and the already pinched NASA budget, he implied, should be saved and consolidated for the more worthy endeavor of exploring truly uncharted planetary territory.

Would I ever argue against probing the possible subsurface seas of Europa, the lakes of Titan or even the permafrost-spiked upper latitudes of Mars as worthy exploration?  Certainly not.  I became a geologist for precisely these sorts of explorations.

However, this bias once again recalls our comfortable teleological conceit.

Nearly simultaneously with this conversation, I gave a talk at the 2013 Next-Generation Suborbital Researchers Conference where I championed the use of suborbital flights to gather new information to explore how low-dose, high intensity radiation exposures may affect the human body.  This untapped research, in turn, could help guide and revise radiation safety measures and protocols right here on Earth.

Admittedly, such work is not as thrilling or romantic as forging ahead into the uncharted lands of new worlds.  However, I would argue to the teeth that this research also presents a completely legitimate form of space exploration, one with potentially even more immediate application to life at home than exploring other worlds.

Likewise, expending the effort to create a private, orbital space transportation system may not seem to be breakthrough space exploration work.  However, the simple addition of more players, minds, and motives has the very real possibility of producing quantum leaps – at the very least by assaulting the status quo.  (On that note, keep an eye on SpaceX’s Grasshopper test program…)

This exemplifies what I see as the root of OldSpace’s resistance: The idea that ground already trodden has nothing left to teach us; That if it has been done before, especially by the hallowed pioneers of early NASA, it cannot be improved or expanded upon while possessing a legitimate claim to space exploration.

If this conception is as prevalent as it seems to me to be, it is with no small amount of urgency that we must confront this bias head-on.

Chiefly, such a perception amongst researchers and professionals in existing aerospace firms creates an entry barrier so impenetrable that private space exploration firms and the innovation that comes with them would be thwarted before they even had a chance to prove themselves in the space market.

Secondly, even if unwittingly held by those on grant review panels, in academic positions of leadership, or even in elected office, these perceptions would threaten the ability for new ideas, techniques, and novel research to receive the support they need to see the light of day, to the detriment of us all.

Like an accurate view of biological adaptation over time, we should afford our cherished concepts of space exploration the freedom to evolve with the pressures of the modern era.

The history of NASA spin-off technologies shows us that even one of these space-based innovations, which may not initially seem as teleologically-advanced as setting foot on Mars, may radically change life on Earth for the better.

Another, seemingly innocuous line of research explored in even the nearest atmospheric shores of so-called Outer Space could trigger the long-sought paradigm shift that at last transforms humanity into a thriving, spacefaring civilization.

Private, professional scientists preparing for hypobaric chamber astronaut training.  (Credit: Ben McGee)
Private, professional scientists preparing for hypobaric chamber astronaut training. (Credit: Ben McGee)

Reconstructing Space

When undergoing suborbital scientist astronaut training myself, a journalist for Newsweek who was there to chronicle the three-day training experience remarked something to the effect of, “People want to go to space because space is special, and the people who go there are therefore special.  So, isn’t it a problem that the more people go to space, the less special it all becomes, and fewer people will ultimately want to go or be interested in/by space?”

Essentially, he was wondering if our work to make space more accessible to both citizens and researchers wasn’t ultimately self-defeating.  It’s a fair question.

However, is that really what draws people to space?  Is it really simply the remoteness of outer space and a desire for the prestige associated with having been where so few have gone before?

Frankly, while I can’t speak for anyone but myself, this seems like the perception of someone who does not personally wish to engage in space exploration.  Of all the people I have known who wish to loose the bonds of gravity and touch the great beyond, it isn’t for bragging rights.

Instead, it’s a deeply personal calling – like those drawn to deep-sea or antarctic ice shelf research – something that seems to draw like-minded or like-willed people to the science frontiers to plunge their own hands past the realm of comfort and viscerally shove on the limits of knowledge and human experience.

By my internal compass, this is what separates mere sightseeing from honest exploration.  Bragging rights versus knowledge.

Adventure may be experienced in either case, but only in the context of the latter could a successfully-completed spaceflight ever be considered a failure, (e.g., if the experiment wasn’t successfully performed or a data-logger malfunctioned, etc.).  This is a healthy benchmark for an explorer, which becomes comfortably similar to how we define exploration here on Earth.

From this perspective, it finally occurred to me what it is that we really need in order to resolve these ongoing debates about space exploration and worthiness.  Quite simply, in order to allow space exploration to blossom, we must let space itself evolve…

…Our collective conception of space and astronauts, that is.

Pilot Felix Baumgartner jumps out from the capsule at an altitude of 24+ miles during the final manned flight for Red Bull Stratos, 10/14/12. (Credit: Jay Nemeth)
Pilot Felix Baumgartner jumps out from the capsule at an altitude of 24+ miles during the final manned balloon flight for Red Bull Stratos, 10/14/12. (Credit: Jay Nemeth)

Closing Thoughts

No matter where we determine the arbitrary dividing line separating the atmosphere from space to be, and irrespective of the motives of those who desire to travel there, the reality is that space is no longer an abstract location.  It’s a place.

In fact, “space” is many places.

Space includes suborbital space, near-space, low Earth orbit, the International Space Station, geosynchronous orbit, cislunar space, the Moon, Mars, asteroids, and all other natural and artificial celestial locales and bodies that now more than ever beg us to recognize them for what they are and pursue what they each, separately, have to teach us.

In so vast a series of environments, both literally and conceptually, there is ample room for all types of exploration, from the public and pure-science motivated to private and profit-oriented; From testing the farthest, uncharted reaches of deep space to surveying the near-space regions just beyond our atmosphere about which we have so much yet to learn, (take the recent discovery of upper-atmospheric sprites and elves as an example).

Just as the same, cerulean blue oceans beckon tourists to cruise in luxury within giant floating hotels, lure fishermen away from land to harvest food from the sea for both business and pleasure, and attract scientists to study its biological, geological, and climatological mysteries, so too will space invite a spectrum of sightseers, explorers, workers, and businessmen.

Consequently, I endorse an extremely broad and inclusive view of space exploration.  For example, while only half-way to even the most liberal current altitude line for reaching space, the Red Bull Stratos “space jump” served several significant space exploration research functions.

Specifically, in addition to wearing the trappings of spaceflight (i.e., pressure suit, pressurized capsule), the jump collected data invaluable to those currently modeling suborbital spacecraft passenger ejection systems, scenarios, and high-altitude parachute systems.  Likewise, prior to the jump (which broke several records), medical and physiological science had no idea what the effects of bodily crossing the sound barrier would be(!).

Further, I believe time will show that, long after our lingering 20th century biases have fallen away, legitimate exploration of all realms applicable to space exploration will be perfectly justified and therefore persistently embraced as such.

And in that case, exploration of each of these different regions of space and near-space will remain vibrant until the boundaries of our knowledge have been pushed so far outward that our civilization’s use of space makes it simply unrecognizable to us today.

It is then, perhaps, that space exploration will finally have abandoned our conceptual conceits and eliminated the vagueness of our young descriptions of the realms beyond our world and those who choose to work and explore there.

-And from the general term Astronaut-explorer I expect a new range of titles will have descended:  Astrographer, Stratobiologist, Orbital Engineer, Suborbital Astronomer, Selenologist, Areologist…

________________

Comments welcome.

13 thoughts on “Treatise: Abandoning OldSpace’s Conceit

  1. “many in the what I like to call the ‘OldSpace’ community, (namely current or former NASA employees and contractors with a more traditional view of space exploration), balk at the idea that these participants represent legitimate space exploration.”

    I agree with most of this article, but I do not believe this characterization is fair.

    First, let me address the age issue. I am in my 50’s. By any reasonable standard, I would be considered “old space” — but look at the people who run “new space.” They’re older than I am.

    Second, many of the oldtimers, like G. Harry Stine and Max Hunter, were miles ahead of old space. They created projects like the X-15. Stine was writing about suborbital space travel for the average citizen when newspapers were still in diapers.

    Shortly before his death, Neal Armstrong made one of his rare public appearances — at the Suborbital Researchers Conference. Buzz Aldrin has also been a strong supporter of suborbital spaceflight. I spent an entire evening in a bar with another one of the Apollo astronauts, a little while back. (Pretty funny, since I don’t drink.) He was *very* interested in suborbital spaceflight, more so than anything which NASA is doing.

    If you can find a copy, read Stine’s “Earth Satellites and the Race for Space Superiority” (written just prior to, but published just after, Sputnik). Despite the title (which was probably editorially chosen), it did not focus solely on satellites. Stine envisioned suborbital research ships, point-to-point passenger rockets, mail rockets, and military reconnaissance vehicles, rapidly evolving to fully reusable orbital vehicles followed by space colonization.

    That is the way many (perhaps most) engineers viewed the future of space travel, prior to Sputnik and Apollo.

    If anything, it is “new space” that doesn’t get it, when it comes to suborbital spaceflight. Prior to 2004, “new space” refused to have anything to do with the X-Prize. (The “new space” leaders couldn’t get along with Peter Diamandis.) At their annual conference, speakers were not even allowed to mention the X-Prize, SpaceShip One, or Burt Rutan.

    After 2004, new space was far more concerned with promoting the Bush Vision of Space Exploration and NASA’s return to the Moon than opening the space frontier to the American people. For years, I tried to convince “new space” leaders to support tax incentives, technology prizes, launch and data purchases, regulatory and liability, space property rights, and other measures that would help the commercial space industry. Each time, I ran into a stone wall. New space leaders told me that COTS/CCDev was the only form of commercialization that was Politically Correct. They just don’t “get it.”

    “New space” has been a failure. ISS has not turned into “Alpha Town” as they predicted. NASA is no closer to the Moon than it was in 2004. “Commercial” crew and cargo is rapidly turning into a sole-source government contract administered under Federal Acquisition Rules and regulated by NASA human-rating standards. All those failures were predictable, to anyone who read G. Harry Stine’s books and columns.

    The future lies not in “new space” but in very old space — the vision of commercial, scientific, and military space exploration and space utilization that existed prior to the Sputnik detour.

    1. Edward,

      Thank you sincerely for taking the time to offer your thoughts; You bring up some excellent points I’d like to address.

      First, I’ll admit that I’d hoped my use of wiggle-phrases, (e.g., “many in” instead of “all” in the sentence you quoted above), would afford me latitude to generalize for the purposes of communicating my point. However, your countpoint is well taken, and perhaps I generalized a little too far, to the point of muddying the waters. =)

      -Certainly I didn’t mean to imply that all space exploration and NASA forerunners stand in opposition to the development of suborbital flights or commercial space initiatives. However, based on my own personal experience and that of relatively young compatriots of mine in these same circles, I think we would be naive (as well as a little blind) to err in the other direction and say that such a bias doesn’t really exist (even if involuntarily).

      And as for the NewSpace/OldSpace terminology, I appreciate that these are fluid descriptions. I intended them in my post not as a slight against physically-older people involved in spaceflight; instead, I intended them as functional descriptions of differing *philosophies.* (e.g., I’ve received plenty of negative feedback regarding the legitimacy of suborbital space research from surprisingly young NASA/space science professionals.)

      In any event, I haven’t read any of G. Harry Stine’s work, but I certainly will. Thank you kindly for the reference. In some ways, what you describe reminds me of the piercing insight of Heinlein on functioning space economies. (Neither, I should note, did I mean to imply that past efforts and thoughts have nothing to offer us, and I feel quite the opposite. -Von Braun’s work on Project Horizon under ABMA was an astonishing roadmap, in my opinion.)

      It is only in hashing out these concepts and perceptions that we can bridge any philosophical divides hanging up the work we all feel is ultimately important or beneficial, and in doing so, help communicate these same rationales to the public at-large.

      For taking part and engaging in a dialogue (as well as for taking the time to digest what I’ll admit was a long read), you have my gratitude!

      Cheers,
      Ben

      1. “I’ve received plenty of negative feedback regarding the legitimacy of suborbital space research from surprisingly young NASA/space science professionals.”

        The reaction to suborbital spaceflight is very similar to the reaction of professionals to microcomputers in the 1970’s. “Toy computers, game machines,” etc. The current generation is too young to remember that, though.

        “In some ways, what you describe reminds me of the piercing insight of Heinlein on functioning space economies.”

        That’s not surprising. Stine was a good friend of Heinlein, who mentored his writing career.

  2. “a NASA historian who I greatly respect alleged to me that private suborbital spaceflight and even new, commercial orbital space modules and transportation systems… were patently unworthy of NASA dollars.”

    Historians often expect the future to look like the past. It’s an occupational hazard.

    In 1975, most people would have found microcomputers to be patently unworthy of Federal dollars. As Steve Jobs said, if they don’t laugh at you, you aren’t trying hard enough.

    1. Ed, I just wanted to 2nd your suggestion that writers like G. Harry Stine were far ahead of “NewSpace Think” as far back as the ’50s. For a suggestion for Ben to read and introduce him to “Stine’s Future Vision” may I suggest his, “Program for Starflight” in Analog, October, 1973. As for the conflict between the establishment view of the value of commercial spaceflight, Harry also had a very interesting plot in “Contraband Rocket” Cc1956 about what problems of the first non-commercial ‘Space yacht’ would face coming from the regular Spaceflight establishment which parallels his original thesis. Thanks for mentioning Harry. He’s a pioneer we owe a lot to.

      1. Jon,
        Thanks for the second! I’m fascinated by the references and eager to digest.
        I’ve found much inspiration in working on the industrial archaeology of legacy NERVA facilities and the pioneering work on nuclear rocketry (e.g., by A.V. Cleaver in JBIS in the 1940s), and I sincerely appreciate your pointing me toward other sources of forward thought.
        So much time is wasted in reinventing the wheel.
        Cheers,
        Ben

  3. Ben, I would like to add an observation to your point that “space is no longer an abstract location. It’s a place. In fact, “space” is many places….” Of course you are correct in what you say but i believe you (and all academia–especially Phd Philosophers) have not quite caught its essence. Space is not just A place, it is ALL possible places. It is the one aspect of the Universe (Def: all reality) that is truely Universal. Where there is any part of the Universe, there is Space and where there is Space, there too is part of the Universe. To paraphrase Yoda, “it surrounds us, it penetrates us (and all objects), it connects everything in the universe together.” I point this out because it answers your question, what draws us to outer space. Our own upward evolution. If we are to discover our true capabiities and evolve to something more than we are today, (rather than evolve backwards) we must face the next level of survival challenge, living in the void of space on dead planets or things of our own making. And to do that, we must (ironically) bring all life along with us! We cannot survive out there on our own. And to do that, EVERYTHING we do in Outer Space BECOMES an adventure of Exploration, BOTH INNER AND OUTER. Of course the politicians and academic panels will resist it…it breaks their power..for when you’re face to face with vacuum its life vs death and nothing they say matters, only what you learn…and do. Thanks for the essay. J. C. Rogers

    1. Jon,
      I can’t thank you enough for taking the time to offer your thoughts. Personally, I love your perspective that any exercise in survival on the space frontier is by definition exploration – in learning how to adapt and survive. (Much as life clamoring on the shores of archaic protocontinents would view as the first steps of exploration and colonization of land…)
      I’m reminded by reports of sentiments by U.S. and U.S.S.R. astronauts/cosmonauts, who when faced with the imminence of their own survival against the Rest (of the Universe), found their governments’ political or social differences to be quite small. (In a way, this echoes all who’ve left the Earth’s surface and experienced the Overview Effect…)
      Thanks for your feedback!
      Cheers,
      Ben

      1. Thanks Ben. “The Overview Effect” I like that (forgive me if it’s not a new phrase…I’m so focused on some things I miss many others) In reading “Off the Planet” by Linenger I was struck by the fact that Mission Control became as much the enemy as the aging space station in their efforts to survive. Once people are in space the true nature of the struggle for survival becomes clear…Survival is an individual problem first and social problem second. And in Space, it better be “all for one and one for all” …or you die. On earth, we live in a cradle and have the luxury of hating each other. In Space, Death is always around us, the true Enemy, and …it …is …Relentless! OK, that’s my “Space Ethics” in a nutshell. Thanks for your work. Clear Space! Jon

Leave a comment