What the world thinks spacecraft scientists/engineers do…

18 11 2014

Well, ramping up to the birth of our second child, (daughter Sloane on 08/05/14!), I’ve been completely absorbed by family by night and the incredible clip at work at Bigelow Aerospace by day.  -And amidst it all, I’ll admit that there is a visceral seduction in the elbow-grease-saturated chaos.

So, with this in mind, during one of my recent sleepless expanses I had the midnight inspiration to create a “What the World Thinks” meme.  It targets (with a little wry self-awareness) the increasing number of us toiling to break open spaceflight in the 21st Century the way pioneers did so for aviation in the early 20th:


Feel free to use/forward freely, and Semper Exploro!


Jumping the Timestream: Post from 07/25/2012

25 07 2014

Well, as a follow-up to a timestream post sent a little more than a year ago, I’m writing today to ask the future about the ultimate merits and/or penalties of having engaged in the National Geographic television show “Chasing UFOs,” which as it would turn out is a great deal less scientific than I’d originally hoped/been led to believe.  Not for lack of trying, mind you.  It just wasn’t up to me.  But then again, you know about all that.

My real question is this: It seems there is a fraternity of professional scientists who wanted to try and engage in mainstream media with varying amounts of success.  I myself don’t like the trend toward less-informative television that I seem to have involuntarily become a part of, and I’m considering taking a more vocal stand on behalf of science in the media.

So…  What happens?  This is all very new territory for me.  What do I decide to do, and what doors do these decisions open and/or close?

Very anxious to learn more,


July 25, 2012; 03:20p.m. PT

At the Right Place at the Right Time…

11 06 2014

Two BA-330 modules form Bigelow Aerospace's Alpha Station, with SpaceX's Dragon and Boeing's CST-100 depicted docked, (left and right, respectively). [Credit: Bigelow Aerospace]

Two BA-330 modules form Bigelow Aerospace’s Alpha Station, with SpaceX’s Dragon and Boeing’s CST-100 depicted docked, (left and right, respectively). [Credit: Bigelow Aerospace]


On top of all of the other trouble I’ve been habitually getting myself into during the last several months, a series of unlikely and highly serendipitous events recently culminated in a sudden career shift.  -One that, I might add, I’ve been pressing for and gambling on for some time.

–And for longtime readers, it’s a shift that strikes to the very heart of this blog.  My unorthodox gambit toward the stars, it may appear, may have actually just paid off.

As of two weeks ago, I no longer make the daily drive to the deserted Nevada haunts of the former A.E.C..  Instead, I’m now under the employ of Bigelow Aerospace, LLC right here in Las Vegas(!).

There just aren’t powerful enough adjectives to describe how thrilling a development this has been for me.

(A Lack of) Details:

As a strictly private enterprise, security concerns regarding my activities at Bigelow Aerospace are paramount, so details I can reveal about my position and activities are consequently sparse.  However, I can say that my assignment as a Crew Systems Scientist in the Life Support Systems group, (in addition to serving as the company’s Assistant Radiation Safety Officer), presently has me diving into materials properties in the space radiation environment, with hints of larger project management responsibilities not far on the horizon…

I’ve never enjoyed work more in my life, and suddenly, it seems that everything has come full circle.

Looking Ahead

Growing up in Vegas, I have a deep attachment to the region.  That’s probably why I ended up moving back.  Meanwhile, my suspicion has long been (for a couple of decades, now) that aerospace is the cornerstone industry Southern Nevada has been waiting for and that our economy now so desperately needs.  (See: Assembly Joint Resolution #8, 1999, to learn about Spaceport Nevada and infer the crushing tale of the ahead-of-its-time initiative that might have changed the region as we know it…)  The synergy of Bigelow Aerospace’s location here, the company’s globally-unique, NASA-derived and improved spacecraft technology, and their recent sale of a module to the International Space Station is highly coincidental.

I feel it in my bones that it’s not only Southern Nevada’s legacy, (e.g., NASA Apollo training, NASA-AEC NERVA nuclear rocket program), but it’s Southern Nevada’s destiny to become an aerospace nexus.

Let’s see if I can’t do something about it.

Semper Exploro!

The Science Behind “America Declassified” – Bayou Sinkhole

14 12 2013


The Worst-Case Scenario

Having taken an in-depth look at the tragic salt-cavern sinkhole in Bayou Corne as a scientist-host for the Travel Channel series, “America Declassified,” it is clear it me that the situation there is truly a perfect storm of physical and chemical hazards.

Now, in order to demonstrate this reality, allow me to turn conventional wisdom on its head.

The Nuclear Option

In today’s cultural climate, most perceive there to be no greater environmental hazard than high-level nuclear waste.  However, if it had been nuclear waste bottled up thousands of feet beneath Bayou Corne, and not fossil fuels, I contend that no one would have ever had to evacuate at all.

In essence, radioactive waste could have saved Bayou Corne.

Controversial?  Perhaps.  But it all comes down to the simplest of physics principles: Buoyancy.

Hydrocarbons float.  They’re lighter than water, hence the sheen observed on puddles, streams, lakes, and oceans after a spill.  Conversely, the great majority of radioactive materials manifest as heavy metals.  They do not float.  In fact, they sink like anchors.

So, had even the most fearsome nuclear waste been stored in or near the doomed cavern, because the collapse took place thousands of feet beneath the surface, the disaster as it unfolded would have looked entirely different.

An Alternate-Reality View

In a parallel universe where there were no hydrocarbons near the salt dome, and instead the nation dumped several thousands of tons of nuclear waste in the cavern, let’s take a look at what would have happened:

First, there would have been no bubbling preceding the sinkhole opening up, as no fossil fuels would have been available to float to the surface.  Then, there would be no “burping” of toxic hydrocarbons that according to many have contaminated the region’s shallow aquifer and water supply.

Next, the lack of the many chemical threats from methane and hydrogen sulfide, (i.e., being poisonous, corrosive, flammable and explosive), means that the primary driver for the community’s evacuation order would not have existed.  (Note: Radioactive material is not explosive, corrosive, or flammable.)

Finally, this all means that while the residents remained, there would have been no need for vent wells, flare wells, or the crisscrossing  networks of hoses and pipes to connect them across streets and through neighborhoods – eyesores and constant reminders of the current lurking chemical threat beneath Bayou Corne.

The disaster would have simply appeared as a new lake appearing nearby, one which has expanded away from the town as the disturbed earth beneath settled.

Without hydrocarbon contamination, this new lake would be safe to boat, fish, and swim in after the ground beneath finishes settling.  It would have simply served as a somber reminder of the need to better understand the environment of our natural resources before harvesting them while marking the silent, entombed radioactive waste sitting nearly a mile below.

Quite a different scenario than that facing the residents of Bayou Corne today, and all the more reason to keep critical thinking alive when assessing our environment, the best ways to preserve it as a resource, and the possible effects of our activities on Planet Earth!

Semper Exploro – Always Explore.
Ben McGee

The Science Behind “America Declassified” – White Sands

6 12 2013


Unintended Consequences

My adventures as a scientist-host with the Travel Channel television series, “America Declassified” took me across the blinding flats of the White Sands Missile Range, which had unintended consequences.  Unnervingly, it deposited a sliver in my mind that I simply cannot ignore.

In forging outward across the staggeringly-immense, derelict runways we now know as White Sands Space Harbor, witnessing firsthand the contrast between what had until so recently been a fully-functional spaceport and today’s blatantly inhospitable reality, I was left with a persistent awareness of a haunting, obscure truth:

Ours is a civilization that is mature (and immature?) enough to have developed space travel technology… and then completely let it go.

Space Shuttle Columbia's landing at White Sands concluding STS-3 in March, 1982.

Space Shuttle Columbia’s landing at White Sands concluding STS-3 in March, 1982.

Sifting the Future Past

This disturbing truth, revealed to me as we barreled across the slow-motion avalanche of selenite crystals relentlessly erasing the spaceport from existence, is that from this moment onward the science of studying humanity’s artifacts – archaeology – will include not just arrowheads and pottery, but also advanced spaceflight technology.

Could it be that we have reached an era where we – due to social, political, or economic difficulties – actually regress technologically?  A time where what we currently achieve is less advanced than what we achieved in the past?

It is here that we venture headlong into the little-known, frontier science of Space Archaeology.

Close-up, showing the intense degradation of the runway markings.

Close-up, showing the intense degradation of the runway markings.

Archaeology at the Final Frontier

Beyond the obvious, the study of historical space technology also includes places like White Sands Space Harbor.  The facility boasted several features unique to human history, like runways that were flat, long, and wide enough to be used to train people to land vehicles returning from space, or the fact that they were marked in such a way that they could be seen by human pilots reentering the Earth’s atmosphere at nearly 18,000 miles-per-hour, or speeds greater than Mach 23(!).

Admittedly, this concept of archaeology runs contrary to our popular view of archaeologists.  It seems difficult, for instance, to envision Indiana Jones racing against the clock to retrieve a turbo-cryo-pump from an abandoned rocket testing facility before it is demolished, or diving to the bottom of the ocean to rescue a historic rocket engine before it rusts to pieces… Yet, that’s exactly what a select few scientists are attempting as I type.

Travel Channel’s Citizen Science-Explorers

In the final analysis, it could very well be that viewers who share in this segment’s exploration of modern lore, tromping off the beaten path with me onto restricted territory at White Sands, were themselves briefly transformed into citizen space archaeologists.

-And in this light, we might all unwittingly serve a very important role through the lens of history – to help ensure that while spaceflight technology might indeed be lost to the sands of time, it will never be completely forgotten.

Semper Exploro – Always Explore!

Ben McGee

System of Fear: A Dose of Radiation Reality

14 10 2013

In line with last week’s post, please see the below infographic, which paints radiation doses in the visual context of a sort of system of planets according to size (click to enlarge):


As is plainly evident, it’s shocking how much the public perception of radiation doses and negative health effects differs from reality.

(For example, in today’s perceptual climate, who would believe that a person could live within a mile of a nuclear powerplant for a thousand years before receiving the radiation dose from a single medical CT scan?)

If feedback to this is positive, I think I’ll make this the first in a series of similar infographics.  (Perhaps people would find it interesting/useful to next have illustrated the relative magnitudes of nuclear disasters?)


If anyone doubts the numbers in the above diagram, please feel free to investigate the references for yourselves!

International Atomic Energy Agency:

U.S. Environmental Protection Agency:

U.S. Nuclear Regulatory Commission:

U.S. National Council on Radiological Protection (via the Health Physics Society):

U.S. Department of Energy:

Nuclear and Atomic Radiation Concepts Pictographically Demystified

10 10 2013

Greetings, all.  Today I’m attempting a different, largely pictographic approach to demystifying the concept of “radiation” for the layperson.

Despite the hype, radiation is a natural part of our planet’s, solar system’s, and galaxy’s environment, and one that our biology is equipped to mitigate at ordinary intensities.  It’s all actually surprisingly straightforward.

So, without further ado, here goes – a post in two parts…

PART I – Radiation and Radioactivity Explained in 60 Seconds:

The Atom

This is a generic diagram of the atom, which in various combinations of the same bits and parts is the basic unique building block of all matter in the universe:


This somewhat simplified view of an atom is what makes up the classic “atomic” symbol that most of us were exposed to at the very least in high school.

Radioactive Atoms

However, what is almost never explained in school is that each atomic element comes in different versions – slimmer ones and fatter ones.  When an atom’s core gets too large, either naturally or artificially, it starts to radiate bits of itself away in order to “slim down.”  This is called being radio-active.

So, there’s nothing to “radiation” that we all haven’t been introduced to in school.  Radiation is the name given to familiar bits of atoms (electrons, protons, neutrons) or beams of light when they’re being flung away by an element trying desperately to squeeze into last year’s jeans… metaphorically-speaking, of course.

Here is a diagram illustrating this process.  (Relax! – this is the most complicated-looking diagram in this post):


So, when a radioactive element has radiated enough of itself away and is no longer too large, it is no longer radioactive.  (We say it has “decayed.”)

That’s it!

That’s as complicated as the essential principles of radiation and radioactivity get.  It’s just basic chemistry that isn’t covered in high school, (though in my opinion it should be!).

PART II – Take-Home Radiation Infographics

So, in an effort to help arm you against the rampant misinformation out there, here is a collection of simple diagrams explaining what everyone out there seems to get wrong.  (Feel free to promote and/or distribute with attribution!)

First, what’s the deal with “atomic” energy/radiation versus “nuclear” energy/radiation?  Do they mean the same thing?  Do they not?  Here’s the skinny:


That’s all.  “Nuclear” means you’ve zeroed in on an atom’s core, whereas “atomic” means you’re talking about something dealing with whole atoms.  No big mystery there.

Next, here is a simple diagram explaining the three terms used to describe radiation that are commonly misused in the media, presented clearly (click to enlarge):


(Armed with this, you should be able to see why saying something like, “The radiation is releasing contamination!” doesn’t make a lick of sense.)

Now, here is a diagram explaining the natural sources of radiation we’re exposed to everyday on planet Earth:


And here are the basic principles of radiation safety, all on one, clean diagram (click to enlarge):


The End! 

Despite the time and effort spent socially (politically?) promoting an obscured view of this science (or so it seems), there is nothing more mysterious about radiation than what you see here.

Please feel free to contact me with any questions, and remember:  We have nothing to fear but fear itself!

Semper Exploro!


Get every new post delivered to your Inbox.

Join 1,782 other followers

%d bloggers like this: