Jumping the Timestream – A Note from 08-09-2012

9 08 2017

Because no one can be certain about one’s own ability to participate in the future, I have a couple of ideas in the works that I’d like to post to the future just in case I (for some reason) don’t get around to it before then. 

First amongst these is this, an idea Chris Hackman and I developed while young astrophysics majors at the Univerisity of Wyoming in early 2000: 

The Antithetic Force

In my view the so-called Hubble Constant is in dire need of a reevaluation in the context of Dark Energy.  I believe the two phenomena are actually the same, and further, that they together represent the evidence of Gravity’s “missing pole” – that is, the push to balance gravity’s pull.  (In other words, “antigravity.”)

I call this force “Antithy,” which as I propose it is a fundamental property of matter – a repulsive force that increases in strength proportionally with distance (i.e., the father away two objects are from one-another, the more strongly they repel).  This is in direct conceptual opposition to Gravity, which is a fundamental property of matter – an attractive force that decreases in strength proportionally with distance (i.e., the closer together two objects are from one-another, the more strongly they attract). 

At first blush, this proposition seems impossible, as soon all objects would be accelerated from one-another beyond the speed of light and the universe quickly undergoes infinite expansion.  However, this conclusion is made without considering the very important spacetime curvature implications of General Relativity.  When looking at the cosmological implications of an Antithetic force from a higher-dimensional context, one quickly realizes that such a force produces an initially-expanding but self-closing universe.  The closure quickly solves Antithy’s own problem, for once closed, the Antithetic Force works in all directions, supplying a sort of repulsive pressure across the universe to counteract initial expansion and shepherd all of the matter in the universe into equilibrium positions with respect to all other matter (like a web of repulsive magnets on the surface of a sphere). 

With this in mind, on small cosmological scales, Gravity dominates.  On large cosmological scales, Antithy dominates.  Thus, Gravity/Antithy is not the weakest but the strongest fundamental force.

I strongly suspect that Antithy is why a consistent value for the Hubble Constant proves perpetually elusive, and Antithy supplies an additional force to explain the nature of “galactic bubbling” in cosmological structure as well as explain the presence of a force attributable to pervasive “dark matter.” 

There you go.  I’m trying as hard as I can to get this proposition into a publication for critical review, but tempus fugit. 

Consider this post a backup for posterity.


Ben McGee

August 9, 2012; 03:00pm

Humanity’s outpost in the sky

8 09 2010

ISS and Atlantis (docked) visible in front of the Sun as seen from Earth. 05/22/2010. (Credit: Thierry Legault)

A short note this morning on humanity in the cosmos.  In the above image, an outstanding French photographer managed to capture what otherwise would have whipped by in the blink of an eye.

Crop of the ISS and Atlantis (docked) in front of the Sun. (Credit: Thierry Legault)

For an instant on May 22nd, the International Space Station (ISS) and the docked Atlantis orbiter (space shuttle) moved between Earth and the Sun as they screamed past at colossal orbital speed (16,500 miles per hour).  Rapid photography, meticulous planning, and much skill managed to catch the fleeting moment.

(The ISS and shuttle are visible to the left of the Sun’s center, with the station’s long pairs of solar panels bracketing the shuttle on the left-hand side, its nose angled away.)

My point in posting this morning, aside from sharing the epic “gee-whiz” factor implicit in this photograph, is to try and bring home something about scale, the cosmos, and our place in it.

While looking at the awe-inspiring photo, try to realize that the point of view of the photo -the Earth’s surface- is nearly 250 miles away from the ISS, but the Sun’s backdrop is a full 93 million miles behind it.

Think about that for a moment.  Another way of looking at it is that the ISS is nearly 360 feet wide.  The sun behind it is 4,567,200,000 feet wide, (or 865,000 miles in width, more than 100 Earths across.)  How big is that?  How far away does that have to be?

-That’s like holding out a matchbox car at arm’s length in California and having it be dwarfed by something sitting in Russia.

The ISS, taken from Atlantis as it undocked on May 23, 2010. (Credit: NASA)

When looking at the photo and realizing this immense reality of scale, the ISS’s cosmic ranking starts to come into perspective.  Even considering that the ISS is likely the most ambitious international effort ever attempted, (and by logical extension, arguably humanity’s most collectively ambitious project to date,) it is still clearly just the beginning of humanity’s toe-hold on the rest of the cosmos.

Space is big. You just won’t believe how vastly, hugely, mind-bogglingly big it is.  (Thanks, Douglas…)  Ahem..

But seriously, maybe by looking at images like the above transit image by Theirry Legault and forcing your brain to accept what it knows to be true – that the station and all of its habitable space (roughly comparable to a 3,000 square-foot house) is just a speck, our entire Earth could be swallowed whole by the Sun without it even noticing, and our Sun is just a mediocre star amongst billions of burning brothers in the cosmos – we’ll all come to realize that we should really start moving out into the rest of the universe… just for safety’s sake.

We’re obviously really significant to ourselves.  Yet, to 99.999% of the rest of the universe, we haven’t even gotten into little league.  Metaphorically, no one knows we exist yet, and minor league players out there like asteroids and comets, (not to mention major league events like nearby supernovas,) can still easily wipe us out.

So, if we want a shot at winning the world series someday, (interpret the cosmic meaning of this increasingly threadbare analogy as you will,) we’d better start playing ball.


Artificial gravity and large-scale settlement space station designed by Wernher Von Braun. (Credit: Courtesy NASA/MSFC Historical Archives)

%d bloggers like this: