Airships: A century from prototype to spaceflight?

24 02 2012

An airship that might have been, from "Sky Captain and the World of Tomorrow." (Credit: Paramount)

Airships.  There’s a certain nostalgic thrill to the streamline, art deco aircraft heyday that nearly was.

To the point (and as illustrated above): the Empire State Building’s observation tower was originally intended to serve as a mooring point for airships.

Achieving the power of flight by harnessing a buoyant gas is simple, reliable, quiet, low-velocity, and (after shifting away from using an explosive gas) veritably safe.  -And to many’s surprise, it might soon take us to space.

USS Shenandoah, U.S. Navy ZR-1, under construction in 1923.

Early 20th Century

Many don’t realize that the United States had airships in military service, which were outgrowths of a German design reverse-engineered after World War I.

For example, from 1922-1923, the first rigid airship, ZR-1 USS Shenandoah was constructed.  Several subsequent military airships flew under the American flag prior to World War II until they became tactically obsolete.

Early 21st Cenury

Now, after decades of work, volunteer-based aerospace firm JP Aerospace has its eyes set on an orbital airship as a gateway to the stars.

Ascender airship being serviced. (Credit: JP Aerospace)

How does it work?  The system is essentially 180-degrees apart from the rocket-and-fanfare, minutes-to-space spaceflight that we’ve all become accustomed to.  Instead, two separate classes of airships and a transfer station in-between slowly loft cargo to orbit over a matter of days.

The process is something they call “Airship-to-Orbit,” or ATO.

Essentially, an airship-to-orbit spaceflight program represents finesse versus conventional rocketry’s brute force.

Though there are still engineering challenges ahead, JP Aerospace is powering through tests of their magnetohydrodynamic thrusters and are continuing toward a stunning run of 67 high-altitude balloon and sensor platform ascents.

So, a century from prototype to spaceflight?  It certainly looks possible.  And if there truly is merit to the airship-to-orbit concept, based on how quickly JP Aerospace has been able to achieve flight benchmarks on a volunteer basis, then just imagine what could happen with serious backing by a government space agency.

Food for thought.

Personally, I love the architecture.  There’s something about truly alien competition to conventional spaceflight providers that I think is sorely needed.

Ascender 6000 on approach. (Credit: JP Aerospace)





SpaceX chasing rocketry’s Holy Grail

24 01 2012

As many who follow and support spaceflight are well aware, a Holy Grail of modern space transportation is the concept of the fully reusable rocket, or Reusable Launch System/Vehicle (RLV).  Now, NewSpace orbital spacecraft provider SpaceX might just have this elusive target squarely in its sights.

1950s-era painting of a Vertical Takeoff Vertical Landing, fully reusable spacecraft. (Credit: Chesley Bonestell Estate)

Many solutions have been suggested to achieve the true RLV space technology benchmark, which would herald a new era in space transportation by driving launch prices down at least an order of magnitude.  However, only a very few of these designs have lofted from the drawing board, and none have yet been successfully implemented.

Amongst these attempts are practically all of the famed, V-2 rocket-inspired Single Stage To Orbit (SSTO) concepts, such as those Vertical Takeoff, Vertical Landing (VTVL) rockets populating 1950s science fiction (right), as well as the Vertical-Takeoff, Horizontal Landing craft (VTHL) such as Lockheed’s Venturestar from the 1990s.   

However, SpaceX, which has a cargo contract with NASA in-hand, is showing no signs of taking a breath prior to their first demonstration flight to the International Space Station later this year.  Instead of the traditional, expendable rocket stages typical of space transportation, SpaceX is aiming to make their Falcon 9 rocket fully reusable (and has been quietly doing so since 2009). 

This bears repeating.  SpaceX plans to try and save their spent stages.

A SpaceX Falcon 9 rocket. (Credit: SpaceX)

A SpaceX Falcon 9 rocket. (Credit: SpaceX)

In a draft environmental assessment filed last fall, SpaceX calls the first reusable stage of the Falcon 9 the “Grasshopper,” and proceeds to generally describe potential launch and testing operations to be conducted from a test site in the city of McGregor, Texas.

The concept is simple.  With a little extra fuel, forethought, and extendable legs, each stage could conceivably guide its own return for a powered landing (video available here). 

(After all, the Lunar Lander Challenge is finding innovative solutions to this same vertical-landing problem from the other side of the conceptual fence.)

If successful, this forward drive from SpaceX could represent a watershed moment for conventional rocketry.  Perhaps, should Grasshopper prove the viability of the RLV, it will no longer be seen as permissible or competitive by launch providers to waste spent rocket stages.

Then, for the first time, we could see a substantial launch price shift along with the largest widening of the doorway to space since the 1960s.

Keep your eyes on this one.





NASA exploration goal to be announced

24 05 2011

Artist's concept of anchoring to the surface of an asteroid. (Credit: NASA)

A NASA media advisory released yesterday alerted the world to what may be a landmark announcement later this afternoon.  Specifically, the advisory states that an agency decision has defined the need for a human “deep space” transportation system.

What does this tell us?  Well, if we visit NASA’s exploration website, the first story would have us believe that we’ve decided to adopt Lockheed Martin’s Stepping Stones exploration plan (see previous story here).  -Will the announcement reveal that we’ve committed to venturing to an asteroid?

Check out the streaming audio feed here at 3:30 p.m. EDT today to find out.  (And cross your fingers.)





NASTAR: Day 3 – The Full Monty

11 05 2011

View of the NASTAR Center's Phoenix centrifuge simulator interior from the observation lounge.

[[Again, apologies for the delay on getting this one out!]]

It’s hard to believe the last day has already come and gone.  This program was worth everything it took to get here, from the fundraising and the family support (thanks, guys!) to the late-night flights and the headaches, (juggling finals for grad school comes to mind…)  Trust me, it delivered.

Entrance to the Phoenix centrifuge simulator, retrofitted as the STS-400.

So, though it was basically impossible to get any sleep last night, the morning came early enough.  After a quick continental breakfast, I checked out of the hotel and blasted on over to the NASTAR Center for our early morning briefing prior to our “full monty” flights. 

These centrifuge “flights” were to be very different from the training experiences we had yesterday, which delivered to us only forces in specific directions, (i.e., pressing us either straight down or straight back into our chairs.)  Today’s simulations, on the other hand, were forged directly from the cockpit sensors of Virgin Galactic’s SpaceShipOne flights and would include a mix of forces – the mix of forces.  -The actual forces you feel when launching out of the atmosphere. 

View of the STS-400 simulator cockpit display as seen projected in the observation lounge.

That’s something that was difficult for me to wrap my head around.  This is what an exo-atmospheric launch really feels like, and it includes the extreme forces felt at both launch and re-entry. 

(What goes up must come down, after all… unless you reach escape velocity, that is.)

The morning coursework was brief, and the anticipation was palpable as we made our way to the observation lounge to cheer on our training-mates for these full-scale centrifuge simulations.  In large part, since we first stepped through the complex doors, the entire NASTAR program had  been aiming for this moment.  One-by-one, we were then led into the centrifuge bay as the others looked on. 

I imagine the experience here provides a mild sense of what it must feel like to take that final walk down the gangway, scaffold, or corridor to your waiting spacecraft.  Even though I knew that this was a simulation, the simple fact that the forces are real was incentive enough to get the body’s adrenal system ramping up to full speed.

View of NASTAR's Phoenix from the observation lounge.

Upon climbing into the simulator, I received a brief safety and communications briefing, the seat was ergonomically adjusted, and I strapped into my five-point harness.  Before I had much time to let it all settle, I was latched inside and the interior lights blinked off. 

A subtle hum as the centrifuge began to idle gave the simulator a very real sense that it was a “living” spacecraft, and the only illumination in the cabin was now emanating from my forward display.  Along with an array of indicators and dials, the viewscreen in front of me projected a photorealistic vista of the desert southwest from an altitude of 50,000 feet. 

Looming above me, the undercarriage of a WhiteKnightTwo-type mothership swayed ever-so-slightly as we circled, waiting for clearance to drop.  A pleasant sounding voice, (which I was later told was provided by a woman named Susan,) then counted down from five, and with a quick jolt, we (my spacecraft and I) detatched from the mothership and began plummeting through the sky.

Moments before liftoff... (or air-drop, as the case may be.)

After only a couple of additional seconds to find the pit of my stomach and prepare for the imminent event, the voice again counted down to rocket ignition.  -And let me tell you, when that motor snapped on, it was a kick in the pants like nothing you’ve ever felt.

With a splitting crack and a roar, I was stomped back into my seat with every ounce of what I’d come to expect from a spacecraft rocket launch.  As the craft pitched upward and accelerated away from Earth, I found myself instinctively engaging the gravity countermeasure techniques that I learned in the previous’ days training – a purely reactive move to keep my wits about me.  Then, in a surprisingly short period of time, the blue out front faded to black and the engine cut out.

Accompanying a soothing sort of silence, the g-forces eased off completely, and the glowing limb of the Earth slid into view amongst a sea of beaming (not twinkling!) stars. 

Congratulations.  You’re officially off the rock.

Even though I knew it was a simulation, there’s something about going through the complete process that’s honestly fairly emotional.  This is as close to doing the real thing as you can get.

So, for the scientist, there ‘s a trick with a suborbital flight as opposed to an orbital flight, which is that you only get a few minutes of weightlessness in space before you have to strap back in for re-entry.  -Many don’t realize that these suborbital spacecraft aren’t going fast enough to make full orbit and are instead only designed for short “hops” out of the atmosphere.  Doing so is much more cost-effective and technically simpler than going into full orbit, but any science you intend to perform, therefore, must be performed immediately and flawlessly.  -You only get one shot.

Now, I hadn’t brought along any official sort of experiment to perform during the simulation, but not wanting to waste the opportunity, I squeezed in a tongue-in-cheek learning experience.  In what I intended to be a rough approximation of an experiment requiring fine motor skills and some creative thought, I carried my phone along in my flightsuit and attempted to bang out a quick tweet from apogee (the highest point before the spacecraft began its descent.)  This wasn’t as easy as it seemed.  I made it – (you can find it on my Twitter feed @bwmcgee as the last tweet on May 11th) – but I unexpectedly lost precious time and wouldn’t have made it if I’d been planning to cut it close. 

Why the unintended close call?  After all was said-and-done, and after all of the g-tolerance training and the pressure breathing techniques, it was adrenaline that I found to be my biggest problem.  This was an intense experience.  Frankly, I was excited.  And even though I felt completely under control, my fingers were trembling; it cost precious seconds to correct inadvertant typos. 

My recommendation is that relaxation techniques should be included in future training.  I definitely plan to give adrenaline-mitigation some extra thought in the future.

All-too-soon, the pleasant voice came back on to announce that re-entry was beginning.  Re-entry is actually one of the most forceful parts of the flight, which is fairly counterintuitive and isn’t very well communicated to the public (in my opinion).  Distilled succintly, consider that when someone slams on the brakes, a person is (familiarly) crushed forward against a car’s seatbelt.  Now, imagine a person to be sitting backwards in the seat when the driver suddenly brakes – he or she will be forced backwards against their backs (the very premise of rearward-facing child car-seats).  Now, imagine that the car is actually a spacecraft moving at thousands of miles an hour, and the act of “braking” is the process of the spacecraft slamming into the Earth’s (essentially) stopped atmosphere.  Your back in this case is pressed into the spacecraft with shocking force.

In all, while surprisingly intense, the heaviest g-forces don’t last for more than a few seconds, and the experience is quite manageable.

As quickly as it all began, my spacecraft returned to aerodynamic flight for  (presumably) a smooth glide landing.  A gentle shove upward from the spacecraft let me know that its wings were once again generating lift, and the pleasant voice welcomed me home (“astronaut”).  Then the lights blinked back on. 

Time to get out.  Alas.

NASTAR suborbital scientist-astrounaut program graduates, milling about the centrifuge after being "pinned" with their wings.

After everyone was finished with their full simulations, and after cheers-and-high-fives-aplenty were exchanged, we engaged in a debriefing where we shared our thoughts and suggestions with the staff.  This appeared to me to have been a very productive meeting, the fruit from which I imagine we’ll see in the coming months and years. 

The debriefing was followed by an awards ceremony in the centrifuge bay next to the Phoenix, where we were each presented our NASTAR wings.  I’m pleased to report that everyone in Suborbital Scientist Class #4 passed exceptionally. 

It was particularly exciting for me, looking at my training-mates who each appeared to stand a little taller, (even if only due to our spinal columns having been spread out under high-g,) to note that many if not each of my classmates will likely have flown into space (becoming true astronauts)  in the next few years. 

We each were standing amongst the pioneers of a new chapter in spaceflight, and I consider myself quite fortunate to have been able to take part. 

Honestly, the rest of the day quickly became a blur of rental cars and freeways and airports… and I haven’t yet really had the opportunity to process it all.  I found the whole experience, human and technical, to be wildly educational.  No doubt there will be more revelations to come.

…but first, I have to finish my term papers.  It’s finals week at North Dakota, and there’s no rest for the wicked.

Thank you, loyal (and new) readers, for joining me as I took one small step *ahem* closer to getting off the rock!  With any luck, this is only a taste of things to come. 

Ad astra, friends.





Russia announces new Nuclear Rockets for manned Mars trip

16 04 2011

1960s Aerojet General rendering of a nuclear rocket in flight configuration.

For the first time in possibly four decades, two electrifying space technology phrases have managed to show up in the same sentence in earnest.  Quietly nestled in the murky details of a somewhat thrilling AP news story about a potential new Russian spacecraft to be produced in the next few years are the words: “manned mission to Mars,” and, “new nuclear engines.”

This is fantastic, as “nuclear engines” can only mean a resurrection of the triumphant nuclear thermal rocket technology pioneered and successfully tested during the Cold War.

Why is this significant?  First, U.S. and Russian testing of nuclear rockets during the Cold War proved not only that the relatively simple technology worked, but that it was amazingly efficient.  So efficient, in fact, that the rockets tested under the NERVA Program are still twice as powerful as our best rockets today, (half-a-century later!).  Secondly, these rockets are of the weight and power necessary to significantly trim down travel times and make interplanetary manned missions feasible.

So, if the nuclear rocket technology is superior, why don’t we have this technology today?  Well, politics and paranoia led to the death of the nuclear rocket back in 1972, when:

  1. a new project called the Space Shuttle drew funding away from the NERVA Program and set our course in space exploration for Low Earth Orbit (LEO) instead of back to the Moon and Mars, and
  2. in the Cold War nuclear holocaust climate, the word “nuclear” became (understandably) a source of irrational fear.

Only a few experts remain alive who worked in the thick of original nuclear thermal rocket research and testing, and with NewSpace set to take over LEO cargo and crew transportation services, it is time to set our sights back on the more ambitious goals of lunar settlements and expanded human exploration of the solar system.  Nuclear thermal rockets will be the technology to take us there.  The Russians apparently realize that, and perhaps an international kick in the pants is what the U.S. research and industrial community needs to realize that it’s time to pick this research back up.

A nuclear arms race between the U.S. and Russia nearly ended the world.  It seems a fitting contrast that in the 21st Century, a nuclear space race between the U.S. and Russia could help humanity settle new ones.





Paradigm Shift

28 02 2011

The Next-generation Suborbital Researcher’s Conference (NSRC) is in full swing, and the momentum here is staggering.  We’ve had a very good showing to start and have gained invaluable feedback… and it’s only the first morning.  As was mentioned by Dr. Alan Stern earlier this morning, this is Silicon Valley, the year is 1979, and commercial spaceflight is the personal computer.

A paradigm shift is happening right now.

The future many of us have been working toward is truly nigh.  More to come soon.





Introducing Astrowright Spaceflight Consulting LLC

27 02 2011

This has been nearly impossible for me to keep under my hat for so long, but after nearly a year of preliminary work, I am thrilled to announce that Astrowright Spaceflight Consulting LLC is open for business (www.astrowright.com).

(c) 2011, Astrowright Spaceflight Consulting LLC

So, what is the venture specifically?

The firm offers a suite of spaceflight-related services, including orbital and sub-orbital spacecraft habitability assessments, ergonomics and human integration certification, preflight fitness and radiation dosimetry programs for those planning or scheduled to fly, spacecraft research payload operation, and microgravity instrumentation development.

We serve the complete range of spaceflight interests, from aerospace corporations and spacecraft manufacturers to academic institutions, professional astronauts, suborbital researchers, spaceflight participants, and interested individuals.

The high-energy, industry-centered team I’ve assembled includes experts in extreme-performance ergonomics engineering (military aircraft and formula-1 racing), exercise science and professional fitness training (for all levels of health, age, and commitment), as well as experts in physical science instrumentation and research, cryogenics, and radiological protection.

Perhaps most importantly, we all come from an industry/corporate environment, so we understand and can speak the language of budget and timeline, cost scheduling, and we know how to accomplish tasks on time and under budget.

For more information, visit visit www.astrowright.com, and to keep up-to-date on Astrowright offerings and events, please follow us on Facebook (Astrowright Facebook page) and Twitter (Astrowright Twitter feed).

No matter your interest in spaceflight, we can help you maximize your time in space.  Contact us to help you meet your spaceflight goals.

(Stay tuned for further developments!)








%d bloggers like this: