Dealing with space contamination

24 08 2010

Operation of LOCAD-PTS swabbing unit on the palm of a NASA spacesuit during simulated activities at Meteor Crater, Arizona; 09/2005. Credit: Dr. Jake Maule.

Planetary Protection, despite how it sounds, does not refer to a Bruce-Willis-style suicide mission to save Earth from an incoming asteroid.  However, it is one of those practical space exploration concerns that will only get more important with time.

So, what is planetary protection (PP)?

Think of it as the discipline of preventing the spread of interplanetary biological contamination, either from or to Earth, by astronauts, rovers, and anything else we might send between worlds.

For instance, what good is the search for life on another world if we actually deliver it there, (e.g., bacteria hitching a ride on the outside of a spacecraft) – or worse – if we accidentally contaminate the site and kill the life we’re looking for?

To this end, NASA scientists have been developing the LOCAD-PTS, which stands for Lab-on-a-Chip Application Development-Portable Test System.  Much like a Star Trek “tricorder,” the handheld device includes an electronic swab wand and onboard processor designed for the rapid testing of biological substances.  In just 15 minutes, an analysis can be performed and contamination results delivered to a waiting astronaut.

NASA Astronaut Sunita Williams using the LOCAD aboard the International Space Station. Credit: NASA

A number of field tests have been performed with the system so far, with many actually performed in space on the International Space Station to determine how biological material is transferred from Earth to space, and to monitor the spread of that material while there.  Samples were taken both inside and outside the station.  Beyond contamination on the exterior of spacecraft being transported to another world, in a closed environment the movement of biological material is also important to ensure astronaut health.

Even better here is the famed NASA technology “trickle-down” effect.  The LOCAD system as tested by NASA will also be highly useful on Earth.

Applications of the LOCAD procedures and technology include not only science on Earth, but also detecting lethal viral outbreaks and helping first responders during a potential biological attack.

With the forethought of technology programs like this, not only will all worlds involved be kept more pristine, but any data gathered will be that much more defensible.  Here’s hoping that before too much longer, the offspring of the LOCAD will get to see some action off-world.

Advertisements




Alien archeology – now a real science?

15 05 2010

Concept sketch of Mars xenoarchaeological site from movie Total Recall. Credit: Steve Burg

Well, I’ve done it.  Making good on a promise I made to myself while presenting a poster at the Society of American Archaeology conference in 2008, I recently submitted an article to the journal Space Policy outlining a framework for a science that doesn’t quite exist yet: Xenoarchaeology.

“Xeno” is Greek/Latin for “foreign” or “stranger.”

Seriously.  I drew from SETI protocols, interplanetary geological sample return guidelines, archaeology fundamentals, and historical examples to make a call for a proactive set of xenoarchaeological guidelines.  My argument?  -The moment that we find something we think might be the real deal on another planet is the wrong moment to try and figure out how to study it correctly and credibly.  And we’ve got spacecraft and landers everywhere these days.  -It’s only a matter of time until we do cross over something that makes us double-take.

To paraphrase my general points in the paper, an archeological mindset is particularly well-suited to analyzing a site of truly unknown character, but there are planetary science landmines a regular archaeologist would be completely unprepared to dodge.  Gravity, temperature, chemistry, and electromagnetic environment can all be (and likely are) very different on another world, which will affect essentially every property of an object.  On Earth we can take all of those things for granted – the strength and effectiveness of friction, for example.  On Mars?  We had to completely redesign the drill bits used on our Mars rovers simply because the effectiveness of a cutting edge on Mars is only half what it is here on Earth because the atmospheric pressure is so low, which is in turn because the gravity is 1/3 weaker.  See what I mean?

If it walks like an arrowhead, and it talks like an arrowhead… it might not actually be an arrowhead on Mars.

So, that’s my stab at taking a scientific discipline out of the realm of science fiction and elevating it to reality.  -The paper made it favorably through editorial review, and I am waiting to hear back on comments from the peer referees.

My ulterior motive?  I really do believe it’s only a matter of time until we find something – and if I center myself in the burgeoning discipline, when we do find something (if I don’t happen to be the one who stumbles across it, myself)… they’ll have to call me.

Fingers crossed.

(NOTE, 10/2010:  The paper was accepted and published!  Find it here.)

(NOTE, 05/2011: See the follow-up post on article responses here!)








%d bloggers like this: