Arsenic-based life and Astrobiology

3 07 2012

File:Arsenate.png

It’s been some time since the controvertial announcement that “arsenic-based life” had been discovered on planet Earth.  With time, however, the less-sensational reality of the discovery has been made more clear, and I think it is sensible to review the current state of the research as it relates to the biochemistry of life and the idea of “alternative” biochemistries.

An Imminent Announcement

NASA "meatball" insignia 1959–82 and 1992–presentThe recap: Making some serious waves back in November of 2010, NASA released a media advisory stating that a news conference would be held days later that would reveal “an astrobiology finding” that would “impact the search for extraterrestrial life.”

The journal Science strictly embargoed details until the news conference was held.

Of course, the internet went bezerk.  NASA’s announcement, the first of its kind since the announcement of potential bacterial fossils in Mars meteoriete ALS-84001, seemed to hint to many that a rover had finally hit paydirt.  Signs of extraterrestrial biology had finally been found!

However, the rampant speculation that followed only fueled an initial spike of disappointment with the actual announcement: that young biogeochemist and astrobiologist Felisa Wolfe-Simon led a research team that discovered, as was popularly-reported, “arsenic-based” life here on Earth.

Wolfe-Simon’s discovery was  published in the journal Science and was actually met with a fair degree of sensationalism right out of the gate, followed by sharp criticism that survives to this day.

File:GFAJ-1 (grown on arsenic).jpg

Magnified cells of bacterium GFAJ-1 grown in a medium containing arsenate. (Credit: NASA)

GFAJ-1: The Arsenic Experiment

A critical question of astrobiology is whether or not life is required to take advange of the same chemistry we do, i.e., that our biochemistry is the only biochemistry that works.  If other types of chemistry were available to life, (such as silicon-based life hypothesized on Saturn’s moon Titan,) then this implies that opportunities for life elsewhere in the universe are great in number.

If not, then life may be more rare; waiting for the perfect “goldilocks” conditions before it can arise.

Testing this hypothesis, astrobiology researchers have been pressing for evidence of so-called “shadow biospheres,” or examples of life taking advantage of different or exotic chemistries right under our own noses.  In other words, seeking out environments where life might have evolved out of necessity to take advantage of different, ordinarily toxic chemical elements is one strategy to investigate the question here at home.

With this objective in mind, Wolfe-Simon (and colleagues) proposed that instead of phosphate (PO4), life might find a way to substitute arsenate (AsO4, depicted in the header)  into its DNA.  Specifically, by isolating an extremophile (an exotic bacterium) from the bizarre ecosystem at work in the alakaline, salt-ridden, and arsenic-laden Mono Lake, Wolfe-Simon’s research team claimed success: the identification of an organism that was capable of substituting arsenic for a small percentage of its phosphorus!

Clarifying “Arsenic-based” 

Wolfe-Simon’s findings, which were obtained when the GFAJ-1 bacteria were grown in a culture doped with arsenate, are more accurately described as identifying a potential “arsenic-utilizing” as opposed to “arsenic-based” form of life.  Even so, the results were considered a boon for those proposing widening the technical search for extraterrestrial life.  In this view, should life be utilizing very different biochemistry than what we’re accustomed to, it is possible that the instruments on our rovers, etc., might not even detect it (or recognize what it was that was being detected).

However, the results have been hotly-debated since, and more recently, have been outright cast into doubt when researchers just this year used a separate analytical method and failed to detect arsenic in the GFAJ-1 bacteria.

The Take-Home

The jury is still out considering whether or not we’ve actually detected so-called “alien” biochemistry or hard evidence of a shadow biosphere.  That having been said, the justification and approach is still in my opinion a solid one.

It remains within the realm of possibility that extraterrestrial life (or terrestrial life under extreme conditions) might, due to opportunity or necessity, be chemically different from our own.

Food for thought.

Advertisements




Revisiting Schmitt’s National Space Exploration Administration

27 06 2012

(National Space Exploration Administration logo, as imagined by Ben McGee)

Nearly a year ago, famed geologist, former United States Senator, and former Apollo Astronaut Harrison H. Schmitt recommended what to many was the utterly unthinkable:

Dissolve NASA.

To be frank, I agree with him.

While to those who have paid even a passing visit to this blog, such an admission may seem completely counter-intuitive.  But the reality is not that Dr. Schmitt has suddenly turned his back on his own legacy, nor have I on our nation’s triumphant space program.

Far from it.

Honoring the NASA Legacy

In an essay he released last year, Dr. Schmitt made a direct call to whoever becomes President  in 2013.  In it, he made clear that only by wiping away the bloated, competitive, politically-crippled bureaucracy that NASA has become and by forging in its place a leaner, more focused, dedicated Space Exploration agency may we honor the NASA legacy.

The claim made waves when it was released, ruffling the feathers of many of his own contemporaries, but (like most other calls for action) quickly flared out and faded away.  Well, I want to re-open the discussion, as this was (in my humble opinion) a damn good idea and one that deserves further promotion and consideration.

With this in mind, let’s revisit his logic.

Leadership has Failed Our “Window to the Future”

To quote Dr. Schmitt:

  • “Immense difficulties now have been imposed on the Nation and NASA by the budgetary actions and inactions of the Bush and Obama Administrations between 2004 and 2012.”
  • “The bi-partisan, patriotic foundations of NASA … gradually disappeared during the 1970s as geopolitical perspectives withered and NASA aged.”
  • “For Presidents and the media, NASA’s activities became an occasional tragedy or budgetary distraction rather than the window to the future envisioned by Eisenhower, Kennedy and the Apollo generation.”
  • “For Congress, rather than being viewed as a national necessity, NASA became a source of politically acceptable pork barrel spending in states and districts with NASA Centers, large contractors, or concentrations of sub-contractors.”
  • “Neither taxpayers nor the Nation benefit significantly from this current, self-centered rationale for a space program.”

It’s actually fairly difficult to argue any of these points, particularly considering the reality that Schmitt comes from a rare position of authority on all points.  He’s a scientist who has bodily walked on the moon and seen the inner machinations of our congressional system as an elected representative.

But, how could we possibly create a new agency from NASA?  Schmitt points out that there is already a precedent for this sort of evolutionary change…

The Precedent for Creating NSEA Has Already Been Set … by NASA

When NASA was formed in 1958, is was forged by combining/abolishing two other agencies.  The first was the famed National Advisory Committee on Aeronautics (NACA), with its many familiar research centers, (e.g., Glenn, Ames, Langley,) which had been around since 1915.  It did not survive the transition.

The second was the Army Ballistic Missile Agency (ABMA), the innovative military space missile (and manned space mission) effort spearheaded by the legendary Wernher Von Braun.  All manned spaceflight and space exploration activities were stripped from ABMA and rolled into NASA.

In truth, Schmitt’s recommendations for what to do moving forward aren’t so drastic as they seem.

Indeed, based on a surprising amount of overlap between NASA activities and those of other scientific national agencies and organizations, they make the utmost sense.

Decommissioning NASA According to Schmitt:  A How-To Guide in 6 Easy Steps

  1. Move NASA’s space science activities into/under the National Science Foundation, (including Goddard Space Flight Center and the Jet Propulsion Laboratory.)
  2. Move NASA’s climate and related earth science research into/under the National Oceanic and Atmospheric Administration.  (My extrapolation: physical space science activities should be wrapped into the United States Geological Survey – with emphasis on the Astrogeology Science Center.)
  3. Place NASA’s aeronautical research under the purview of a reconstituted NACA, composed of Langley Research Center, Glenn Research Center, and Dryden Research Center.  (California’s Ames Research Center, Schmitt proposes, is now redundant and should be auctioned off to commercial spaceflight developers.)
  4. Procure spacecraft launch services exclusively from commercial providers, (SpaceX, ULA, etc.)
  5. Retire NASA as an official agency as the International Space Station is de-orbited by 2025.
  6. Have the 2012-President and Congress recognize that a new Cold War exists with China and “surrogates,” and in response create a new National Space Exploration Administration, “charged solely with the human exploration of deep space and the re-establishment and maintenance of American dominance as a space-faring nation.”

A Breakdown of NSEA: Young, Lean, Imaginative

What would NSEA look like specifically?  Schmitt lays out the proposed agency in compelling detail.

NSEA would gain responsibility for Johnson Space Center (for astronaut training, communications, and flight operations), Marshall Space Flight Center (for launch vehicle development), Stennis Space Center (for rocket engine testing), and Kennedy Space Center (for launch operations).

NSEA’s programmatic responsibilities would include robotic precursor exploration as well as lunar and planetary resource identification research, as with the Apollo Program.

Instead of grandfathering the NASA workforce as-is, the new agency according to Schmitt would be almost entirely recomposed and given authority to maintain a youthful workforce – “an average employee age of less than 30.”  Why?  Schmitt claims that, like with Apollo, “Only with the imagination, motivation, stamina, and courage of young engineers, scientists, and managers can NSEA be successful in meeting its Cold War II national security goals.”

(Of note is the fact that during the Apollo program, the average age of mission control personnel was 28.  The average age of NASA employees is now 47.)

Clearing the Legislative Hurtles Before Beginning the Race

With an eye toward the chronic challenges NASA faces due to regularly shifting budget priorities and directives, Schmitt regards that the legislation that creates NSEA would also be required to include a provision that “no new space exploration project can be re-authorized unless its annual appropriations have included a minimum 30% funding reserve for the years up to the project’s critical design review and through the time necessary to complete engineering and operational responses to that review.”

This is a much-needed safety net for the inevitable unknowns that are encountered when designing new spaceflight hardware.

The National Space Exploration Agency Charter

Finally, Schmitt penned a charter for this new space agency, which simply reads:

  • “Provide the People of the United States of America, as national security and economic interests demand, with the necessary infrastructure, entrepreneurial partnerships, and human and robotic operational capability to settle the Moon, utilize lunar resources, explore and settle Mars and other deep space destinations, and, if necessary, divert significant Earth-impacting objects.”

Simple.  To me, this breaks down as four primary directives:  Develop the tech to sustain a human presence off-world.  Utilize extraterrestrial resources.  Stimulate the American economy and imagination while affording us the opportunity to assert space activities as peaceful endeavors.  Develop the ability to protect Earth from NEOs.

I think this is a bold new direction, one which honors the NASA legacy, enables direct, decisive space exploration activities, and streamlines the country’s scientific bureaucracy.

Let’s talk seriously about this.

Semper Exploro.





Telepresence, Androids, and Space Exploration

13 06 2012

Our culture is replete with examples of androids and humanoid robots in space.  From David in Ridley Scott’s brand-new film, Prometheus, to the iconic C-3PO in George Lucas’s Star Wars, androids and humanoid robots are often portrayed as our trusted servants and protectors, capable of tasks we ourselves cannot or will not perform. 

Further, the related idea of a person using a surrogate, technological body to survive harsh environments is nearly as old, most recently exemplified by the title character’s lab-grown hybrid body in James Cameron’s recent film Avatar.

These notions are sensible ones for three primary reasons:

  1. Space travel and planetary exploration of any significant distance or duration presents a harsh environment from multiple fronts – psychological, physiological, temporal. 
  2. Maintaining a human form-factor means that these androids will be able to use the same equipment and vehicles as has been designed to accommodate the rest of the crew, a clearly efficient attribute. 
  3. It has been shown that human beings interact more comfortably in may cases with anthropomorphized machines – easing crew comfort.

Well, it appears that reality is finally catching up to these sci-fi archtypes (or, arguably, proving that by defining our expectations science-fiction often acts as a self-fulfilling prophecy.)

Roscosmos’s SAR-400

Russian telepresence android SAR-400 at a workstation. (Credit: RSK)

As detailed in a story from The Voice of Russia here, the Russian space agency, Roscosmos, has long been developing the SAR-400, a telepresence robot they term an “android.”  (Note: The definition of what qualifies as an android is still a little loose.)  SAR-400 is designed to act as an astronaut surrogate whenever possible, particularly during spacewalks, to reduce safety risks to the humans aboard the International Space Station (ISS). 

While no plans to send a SAR-400 to space have been announced, this project is extremely similar to a beleagured NASA project of parallel design and scope that is already aboard the ISS.

NASA’s Robonaut-2

Robotics Industry Association President Jeff Burnstein shakes hands with GM-NASA telepresence android “Robonaut 2.” (Credit: RIA)

The NASA Robonaut project, with a lengthy history dating back to conceptual work performed in 1997, is a telepresence robot sharing a nearly identical design with the SAR-400 that is intended to perform work in space and on planetary exploration missions.  (On an interesting side note, during the early 2000s Robonaut’s cosmetic “head” bore an uncanny resemblance to the highly-recognizeable Jango/Boba Fett costume helmet of Star Wars fame.) 

This culminated in 2011 with the launch of a test Robonaut-2 (R2) to the International Space Station.  While the robot has been configured to integrate with the station systems, the robot has seen little real use due heat-dissipation and other technical difficulties.  However, limited tests are proving favorable and increasing the likelihood that that future semi-autonomous telepresence robots will be considered part of the crew.

Robonaut project manager Roin Diftler is quoted as saying that their final objective is “…relieving the crew of every dull task and, in time, giving the crew more time for science and exploration.”

Implications for human space exploration

In a very direct way, this technology reopens the classic debate about whether or not the future of space exploration involves astronaut human beings at all.

Opponents to human-based space exploration cite costs and logistical complications, while proponents note that human beings still exhibit unique learnining, problem-solving, and innovation capabilities necessary for frontier work that are far beyond the ability of modern artificial intelligences. 

Bishop (341-B), a benevolent android and space crewmember from the film “Aliens.” (Credit: 20th Century Fox)

Perhaps, instead of replacing humans on the frontier, the future will be a hybrid approach as has been the case so far.  As R2’s program manager implied above, perhaps the ultimate solution is to cater to our strengths – in androids, an unblinking sentinel, able to perform repetitive or tedious tasks without tiring and work in dangerous environments without suffering the effects of stress; in humans – creative problem-solvers and pioneering explorers with the ability to innovate, and perhaps more importantly, to inspire.

In this light I’m strongly reminded of Bishop, the “synthetic person” artificial intelligence from the James Cameron film, Aliens.  A good guy strictly governed by Asimov’s Three Laws of Robotics, Bishop is shown to accompany space crews into unknown territory, operate equipment, pilot vehicles, perform analyses, reduce data, and save the day on multiple occasions. 

Might Robonaut-2 and the SAR-400 be the equivalent of a real-life Bishop’s distant ancestors?  Time will tell.  

However, in this character, science fiction has erected a sensible guidepost for what future android integration into space crews for the purpose of enabling human space exploration would look like.





Retrospective: The coolest orbital image of 2011

29 05 2012

Space shuttle Atlantis leaves a glowing trail from the heat of re-entering the Earth’s atmosphere on its way home. (Credit: NASA)

In case you missed it, nearly a year ago on July 21, 2011, the space shuttle Atlantis was imaged as it began its fiery descent toward Earth.  As the final flight of the shuttle fleet, this was truly the last opportunity to grab this sort of image, and somehow the International Space Station Expedition 28 crew managed to snap the hero shot.

This visual – a heroic, blazing return to our world from the abyss beyond – is something sci-fi has been showing us for decades but that reality had yet to provide. 

A great moment, visually and historically.





Historic Dragon Caught: Dawn of Commercial Space

25 05 2012

(Credit: NASA)

Quite literally, the sun dawned across from the International Space Station minutes ago to reveal history in the making.

During a flawless night-time “grab,” Astronaut Don Pettit used the station’s robotic Canada arm to successfully secure SpaceX’s Dragon spacecraft.  This makes SpaceX the first private company to launch a spacecraft into orbit and rendezvous with the station.

(Credit: NASA)

Human history will never be the same.  It is now living fact that entrepreneurs can leave our planet to seek reward beyond.

-And a mythical dragon took us there.

All looks well, and so-called “berthing” of the spacecraft (not to be confused with “docking,” which occurs under a spacecraft’s own power,) to the station should occur later today.

(Credit: NASA)

(Credit: NASA)





Spaceflight simulators, space games, and STEM

17 04 2012

Cockpit view from a simulated spacecraft in freeware spaceflight sim, "Orbiter."

For those who aren’t familiar, “STEM” is a particularly hot-button acronym in the professional space education community these days that stands for, “Science, Technology, Engineering, and Mathematics.”

These are the college degrees and professions that ultimately keep the economy, innovation, and space exploration in particular going.

These are also the fields that have been suffering from declining numbers during the last couple of decades.  (Consequently, projects with heavy STEM education components are often bumped to the top of the funding pile…)

In response, there appears to be a waxing tide of development of vaguely (or overtly) educational space-centered video games.  This seems to be a new push during the past couple of years, distinct from the open-source processing endeavors such as SETI@home and MilkyWay@home.

In this light, I’d like to take a moment to review and highlight a few of many excellent spaceflight software options out there, historical and contemporary, that are worth checking out for yourself (and some of which may even need your help!)

Starlight: Inception

Based solely on personal bias, I must begin with the lost genre of the spaceflight simulator. Or, more specifically, the spaceflight combat simulator.

Much like a conventional flight simulator, spaceflight simulators provide exactly what they sound like they do: the in-cockpit experience of flying a spacecraft or space “fighter.”

While many of these as games are related to sci-fi franchises, (e.g., X-Wing, Tie-Fighter, Wing Commander,) and contain much scientifically-apocryphal content, such as sounds in space or apparent aerodynamic/non-Newtonian movements in a vacuum, I don’t think the impact of these games can be overstated.  I myself was in part inspired to a career in aerospace by games like these as a kid.

(More accurate but less-adrenaline-pumped simulators without a “game” component include Kerbal Space Program, Orbiter and Microsoft Space Simulator.)

Credit: Escape Hatch Entertainment LLC

So, this brings me to the present day.  It’s been many years since the last spaceflight combat simulator was released, (e.g., Descent: Freespace, Tachyon,) and in an attempt to restart the genre, Escape Hatch Entertainment LLC has launched a Kickstarter campaign to fund their proposed game, Starlight: Inception.

Evoking design elements of classic Star Wars, Wing Commander, and even some of James Cameron’s “Aliens,” the game looks to hit all the right notes to inspire a new generation of impressionable gameplayers toward a future amongst the stars.

Frankly, I feel like having games like this out there contributing to the social fabric is critical.  Plus, being a privately-funded campaign, the project team is very receptive to the suggestion of its backers – the more people call for enhanced realism and technical accuracy, the more will be incorporated!

Check them out and offer your support if you feel so inclined – the game won’t be “launched” unless they reach their fundraising goals.  Future generations of inspired spacefarers (or other STEM professionals) may thank you!

NetworKing

From the fantastic to the strategic, I’d like to mention a free game developed by the technology office at NASA Ames Research Center called, “NetworKing.”

The objective of this educational Real-Time-Strategy game is very grounded: to build and maintain three separate space communications networks, (Near, Space, and Deep-Space,) and evolve them to the point of being unified into a single space communications network.

The equivalent of experience points are earned as NASA missions are successfully enabled by the network, and money for upgrades is earned as time on the network is leased to commercial satellites.

In all, an innovative way to communicate what it takes to run a communications network in space and definitely worth checking out.  -Playable now online or via free download.

Astronaut: Moon, Mars and Beyond

On another side of the spectrum is the concept of the MMO, or Massively-Multiplayer Online game.

NASA recently experimented with the MMO concept as a means of education outreach and STEM inspiration with a project called Moonbase Alpha.

Evolving the success of Alpha a little further, NASA and Project Whitecard Inc. initiated another ultimately-successful Kickstarter campaign that kicked off the creation of a full-fledged, NASA-sanctioned MMO entitled, “Astronaut: Moon, Mars and Beyond

Screenshot from NASA MMO Astronaut: Moon, Mars and Beyond. (Credit: Project Whitecard)

The game aims to incorporate real locations, hardware, and mission profiles, leveraging the full support of NASA to create a tool to engage thousands of people simultaneously in realistic space exploration role-playing.

A beta-test version is expected this year, with the game to be released in 2013.

-So, in short, there’s lots of activity on the space-meets-video-games front, and much of it is being self-directed with the support of NASA itself.  Check it out and/or show your support!  (Even if only to point someone else in their direction.)

The astronauts of tomorrow will likely get their first space exploration thrills on games like these.  Let’s help make sure they have the opportunity.





A shotgun blast of suborbital science

15 03 2012

I’m pleased to report that I recently had the fortune to represent my spaceflight consulting firm Astrowright as a sponsor of, as well as present research at, the Next-Generation Suborbital Researcher’s Conference this past February 26-29 in Palo Alto, CA.  

Ashley presenting our voluntary "Flight Readiness" certification service at NSRC 2012!

Specifically, after nearly a year of research and client-training-data-mining together with my friend/ballet-dancer/anthropologist/excercise-scientist/astronaut-trainer/partner-in-crime Ashley Boron, our presentations centered this year on our frontier fitness services – Astrowright’s custom preflight fitness training program for space passengers-to-be and a “flight readiness” benchmark testing and certification program intended to help aspiring spaceflight pros demonstrate that they’ve got the Right Stuff

The three-day event was intense – with a flurry of presentations covering everything from spacecraft development and mental stress training to planetary science and research payload design.  If that weren’t enough, beyond the research presented at the conference, (for the interested, the program is available here,) the meeting was an explosion of exciting commercial spaceflight activity, from keynote speaker Neil Armstrong’s comparison of early X-15 flights to the current activity in civilian spacecraft testing to XCOR’s giveaway of a trip to space!

Unfortunately, I had only a single day to fly out there and fly back – one of the pitfalls of too many irons in the fire – but the experience in even that short amount of time, like the last one, was thrilling.  The conference smashed both attendance and support records, as well – Further evidence that the suborbital science community is nothing shy of a force of nature blasting the doors off the hinges of civilian spaceflight.

Like many of us have been championing for a while now, a paradigm shift truly feels in-progress.  Many networking and potential research and business opportunities arose as a result of NSRC 2012… and I can’t wait to tell everyone about them at NSRC 2013!

For more details on the conference and/or our presentations, visit the Astrowright company blog here.

Semper exploro!








%d bloggers like this: