Rhinegold, Space Cowboys, and “Planetary Resources”

19 04 2012

The internet is alight with rumors concerning the James Cameron/Charles Simonyi/Peter Diamandis/Eric Anderson-backed superproject, not yet more than a speculation-frothing logo, to be announced April 24th:

These rumors go on to speculate that the venture will be a full-fledged asteroid-mining venture, sparked in no small part by the media alert sent by the company yesterday, which stated that it “will overlay two critical sectors — space exploration and natural resources — to add trillions of dollars to the global GDP.”

Let’s just say that’s where I was given pause.  Of course it’ll be extraterrestrial resources, (as if the name isn’t overt enough,) but I agree – they’ll likely be going after nickel-iron asteroid bodies and platinum-group metals, to start.

Why would I say so?  Well, I calculated those very same numbers 13 years ago.

The Rhinegold Project

Set the time machine back to 1999 for a moment.

There, at the University of Wyoming, in the back corner of an undergraduate physics course, you’d find a couple of young, idealistic astrophysics majors ignoring the lecture on frictionless surfaces and discussing the problems that brought us there: Dark Energy, (though it hadn’t been named that, yet; it was the High-Z Problem at that time,) Dark Matter, and Space Colonization.

Rhinegold Project logo. (Credit: Ben McGee/ITD)

Yes, one of these young scientists-to-be was yours truly.  The other was one of my best friends (and future jazz compatriot), Chris Hackman.  And it was there, in the back corner of that lecture hall, that I performed my first back-of-the-envelope calculations on harvesting the material in a single, mile-sized nickel-iron-rich asteroid.

On its face, the number was in the trillions of dollars.

I knew this was a rough number, an overestimate.  -But even accounting for flooding the terrestrial nickel and iron markets, the number was still (literally) astronomical.  It would more than pay for the cost of development, should only someone front the (we calculated) four-to-ten-billion dollars required to get the program running.

Literally trillions of dollars of harvest-able material is waiting, ripe for the plucking, between the orbits of Jupiter and Mars, should someone only figure out how to get to it and bring it back.

So, we decided to try and lay the groundwork ourselves under a non-profit science research institute I founded in 2002, called the Institute of Temporal Dynamics (now retired).  We called the project The Rhinegold Project.

(Being music geeks as well, we liked the metaphor to the Wagner opera.  Like the legend, we planned to harvest the material and forge it into a ring – in this case, a Von-Braun-ian, artificial-gravity space station.)

I rallied friends of mine to the cause: Aspiring chemical engineers; mechanical engineers; other geology students.  We worked out orbital interception scenarios as well as in-situ harvesting architectures.  And as far as we could tell, we were amongst the first to approach the problem seriously.

Space Cowboys

Our Microgravity Centrifugal Smelter NASA proposal, ca. 2004.

Our project matured as did our degree paths.  By 2004, I’d switched to planetary geology and had taken the lead on an interdisciplinary college team to attempt the first in-situ asteroid-mining proof-of-concept for NASA’s KC-135 “Microgravity University” grant program.  Our team?  The UWyo “Space Cowboys,” and our project: the “Microgravity Centrifugal Smelter,” or MCS.

Ultimately, our project was not selected to fly – a devastating blow being that we lost to another University of Wyoming team testing their second year of a resistance exercise machine, something far less ambitious, in our opinion.  (We had a microwave reactor ready to go and breakthrough phase-transition boundary-condition chemical engineering showing that our low-temperature resource-and-matrix analogue asteroid would perform like a real one at lower “smelting” temperatures.)

The UWyo Space Cowboys then graduated and scattered to the wind.

Full Circle – Astrowright and the University of North Dakota

Well, my passions being what they are, I was never content to simply walk away from the concept of asteroid mining or MCS research.  A recent paper for graduate school at UND last semester assessed the validity of the “gold rush” metaphor commonly invoked by proponents of asteroid mining, and at my spaceflight consulting firm, we’ve been trying to find ways to fund more modern incarnations of MCS research.

Coming full circle to my back-of-the-envelope days, it looks to my eyes like the folks at Planetary Resources have finally found a way to identify and/or convince those venture capitalists who are willing accept the risk and take the plunge to go after an asteroid.  (In short, it looks like they beat me to it. *grin*)

The cost, as I mentioned earlier, will be truly astronomical.  However, the reward may be equally as great.

The good news?  The finding of my recent asteroid/Yukon comparison paper is that on the frontier, cooperative competition is necessary for survival, so it seems there is room enough for all.

The final analysis?  Perhaps with Planetary Resources breaking new ground in the resources market, others will be made aware of the tantalizing possibility that asteroid resource operations present and decide to jump in as well.

Maybe this is the start of the “21st-Century Gold Rush” many of us have been waiting for.

I can’t wait to see what these guys are all about.

Advertisements




A shotgun blast of suborbital science

15 03 2012

I’m pleased to report that I recently had the fortune to represent my spaceflight consulting firm Astrowright as a sponsor of, as well as present research at, the Next-Generation Suborbital Researcher’s Conference this past February 26-29 in Palo Alto, CA.  

Ashley presenting our voluntary "Flight Readiness" certification service at NSRC 2012!

Specifically, after nearly a year of research and client-training-data-mining together with my friend/ballet-dancer/anthropologist/excercise-scientist/astronaut-trainer/partner-in-crime Ashley Boron, our presentations centered this year on our frontier fitness services – Astrowright’s custom preflight fitness training program for space passengers-to-be and a “flight readiness” benchmark testing and certification program intended to help aspiring spaceflight pros demonstrate that they’ve got the Right Stuff

The three-day event was intense – with a flurry of presentations covering everything from spacecraft development and mental stress training to planetary science and research payload design.  If that weren’t enough, beyond the research presented at the conference, (for the interested, the program is available here,) the meeting was an explosion of exciting commercial spaceflight activity, from keynote speaker Neil Armstrong’s comparison of early X-15 flights to the current activity in civilian spacecraft testing to XCOR’s giveaway of a trip to space!

Unfortunately, I had only a single day to fly out there and fly back – one of the pitfalls of too many irons in the fire – but the experience in even that short amount of time, like the last one, was thrilling.  The conference smashed both attendance and support records, as well – Further evidence that the suborbital science community is nothing shy of a force of nature blasting the doors off the hinges of civilian spaceflight.

Like many of us have been championing for a while now, a paradigm shift truly feels in-progress.  Many networking and potential research and business opportunities arose as a result of NSRC 2012… and I can’t wait to tell everyone about them at NSRC 2013!

For more details on the conference and/or our presentations, visit the Astrowright company blog here.

Semper exploro!





NASTAR: Follow-up videos

1 11 2011

View of the Phoenix centrifuge simulator interior from the observation lounge.

For those interested in something a little more full-motion, I submit to you a quick post today pointing toward what civilian commercial scientist-astronaut training, (i.e., non-NASA) looks like.

Courtesy of Keith Cowing (of nasawatch.com, spaceref.com, and a phalanx of other space industry sites fame,) the video of our high-g centrifuge training at the NASTAR Center last May was recorded and uploaded as a live webcast (I’m second in the video).

NOTE: Because the video was recorded live, all commentary, hoots, hollars, and laughter is therefore uncensored and should be received in that light.

Click here for the archived webcast. (Be advised – the video is long!)

Each participant in the video takes three “flights” on a SpaceShipOne-style craft simulator built into a state-of-the-art centrifuge.  The first of these simulations is performed at 50% power, and the second two are at 100%, enabling trainees to experience exactly what the pilots of SpaceShipOne experienced on their way to space.

Video of the exterior of the simulator during a “run” may also be found here, while a view of the display inside the simulator during a run may be seen here.

It was a blast!  (I blogged the experience starting here.)  So, for the curious, enjoy the video, and many thanks to Keith for archiving this for posterity!





What happened to Zero-G Football?

6 10 2011

Even team sports are possible on larger "zero-g" aircraft. (Credit: Space Adventures)

Back in late 2005, a company called IPX Entertainment, (headed by Haughton-Mars Project veteran Rocky Persaud,) began promoting microgravity sports.

With an interview with Leonard David, another on Ajax Developers Journal, and a piece written by Rocky himself on The Space Review, he championed the promise of repeat customers for viewing and participating in zero-g sports as a way to break open the NewSpace market to the masses.

The plan included a reality show, “Space Champions,” which would chronicle the development of a proprietary sport, first called “Parabolic Football,” or “Paraball,” and then intriguingly changed to, “Zero Gravity Football.”  (Was “Paraball” too confusing a term?)

Rendering of a Virgin Galactic suborbital space passenger. (Credit: Zero G)

A Zero Gravity Sports League was also on the books, as were flagship microgravity Zero Gravity Football teams in the U.S. and Canada.

This appeared to capitalize on the rush of attention given to Virgin Galactic SpaceShipOne’s  clinching of the Ansari X Prize, and by all accounts, the situation as of this late 2006 interview was looking up.

So, what happened?

I actually don’t have a direct answer.  The company no longer exists, and the corporate charter has been revoked.  I suspect the fact that the commercial suborbital space market didn’t mature as quickly as many hoped played a role.  Also, the failure of the Rocket Racing League to take off (yet), which is also a “space sport” intended to rally public interest in private space, may have made investors and advertisers hesitant to invest in a “zero-g sport.”

Regardless, perhaps with SpaceShipTwo about ready to fly and XCor’s Lynx right behind, the market may be more fertile for the advent of microgravity sports?





Introducing Astrowright Spaceflight Consulting LLC

27 02 2011

This has been nearly impossible for me to keep under my hat for so long, but after nearly a year of preliminary work, I am thrilled to announce that Astrowright Spaceflight Consulting LLC is open for business (www.astrowright.com).

(c) 2011, Astrowright Spaceflight Consulting LLC

So, what is the venture specifically?

The firm offers a suite of spaceflight-related services, including orbital and sub-orbital spacecraft habitability assessments, ergonomics and human integration certification, preflight fitness and radiation dosimetry programs for those planning or scheduled to fly, spacecraft research payload operation, and microgravity instrumentation development.

We serve the complete range of spaceflight interests, from aerospace corporations and spacecraft manufacturers to academic institutions, professional astronauts, suborbital researchers, spaceflight participants, and interested individuals.

The high-energy, industry-centered team I’ve assembled includes experts in extreme-performance ergonomics engineering (military aircraft and formula-1 racing), exercise science and professional fitness training (for all levels of health, age, and commitment), as well as experts in physical science instrumentation and research, cryogenics, and radiological protection.

Perhaps most importantly, we all come from an industry/corporate environment, so we understand and can speak the language of budget and timeline, cost scheduling, and we know how to accomplish tasks on time and under budget.

For more information, visit visit www.astrowright.com, and to keep up-to-date on Astrowright offerings and events, please follow us on Facebook (Astrowright Facebook page) and Twitter (Astrowright Twitter feed).

No matter your interest in spaceflight, we can help you maximize your time in space.  Contact us to help you meet your spaceflight goals.

(Stay tuned for further developments!)





Getting up to speed, part 1. (Space update)

20 02 2010

To get stated, it’d probably be helpful if I offer up a recap on my spaceward progress to date.  So, for the record, objective #1 is: Employment off-world.

Volcanic eruptions on Io during Jupiter occultation event, WY, 1999.

From the top.  After having my lifelong adolescent hopes dashed with a rejection letter from MIT after graduating with a sterling record from the Las Vegas Academy of International Studies, Performing and Visual Arts, I started my collegiate schooling in 1999 at the University of Wyoming in what I found (to my dismay) was but a shell of the astrophysics program I was promised. Unbeknownst to me, politics had taken hold just months before in what was to be my department, and a new university president thought it would be a good idea to threaten the entire physics program with dissolution and drive away all of the faculty.

Enter yours truly.

I floundered for a couple of years under part-time, uninvested and lackluster instructors, eventually discovering that the program and the field in general wasn’t ever going to take me where I wanted to go.  Astrophysicists aren’t field personnel, and I wanted to be where the action is.  I wanted to be out there collecting data, not reducing and analyzing data that other explorers were collecting.  So, I switched over to geology and partnered myself with a planetary scientist using a nearby infrared telescope to study volcanic eruptions on Jupiter’s innermost moon.  The experience was breathtaking, and it was visceral.

For the first time since leaving high school, the pieces began to feel as though they were falling into place.

Me at the borehole video observation tent, Bench Glacier, AK, 2003.

Then, I realized if I were ever going to walk on the Moon (or Mars, or Europa,) I was going to need field experience.  Pounding the pavement at UW resulted in my being picked up by a research team probing glaciers in the Alaskan wilderness.  I survived with six other guys helicoptered onto what was a truly otherworldly environment for a summer, compiled the research, and presented some fairly thrilling and unexpected findings at a scientific conference the next year.  It was about as close to “planetary” fieldwork as you can get on Earth.  The work led to futher cryosphere field and laboratory research on naturally supercooling rivers and the many mysterious properties they express.  This led to further surprising scientific findings and presentations, and it was here that I became really hooked on field science.

Life really began to feel as though it was settling into a groove.

I dove into practical space science research using both geology and astrophysics concepts, devising a way to separate harvestable material from asteroids in microgravity.  After bringing together a student research team to work on the project, we made a run for a NASA research flight, and I graduated in the spring of 2005.

Then came my riskiest decision to date.

You see, the obvious way to space is NASA, and there are two obvious roads to NASA.  One is to join the Air Force or Navy as a pilot, (which I very nearly signed up for on three separate occasions,) and the other is to get your Bachelor’s Degree, Master’s Degree, Doctorate, find a post-doctoral position with one of the NASA facilities, and fight against all of the other post-docs to get involved with one of the hot exploration missions (lander, rover, etc.).  So, naturally, I did neither.

To be honest, I didn’t like my odds either way.  I’d felt since the ’90s that the future of space exploration was corporate, because that’s where the venture capital is, and that’s where accepting risk is a way of life.  So, my gamble was to leave academia entirely for the time being and strive to make myself the ideal remote field scientist in an “industry” environment.  I decided to bet that I could develop the skills either NASA or a private space exploration company would be looking for by the moment they were looking for them.  The reality is, when someone does decide to send explorers back to another world, they’re going to need people who are already familiar working on their own, performing highly technical work in small groups in extreme environments with a comfortable sort of self-sufficiency.  So, I kept my nose down and landed in the closest place on Earth there is to the Moon – the crater-ridden Nevada Test Site:

To be continued…








%d bloggers like this: