Nuclear and Atomic Radiation Concepts Pictographically Demystified

10 10 2013

Greetings, all.  Today I’m attempting a different, largely pictographic approach to demystifying the concept of “radiation” for the layperson.

Despite the hype, radiation is a natural part of our planet’s, solar system’s, and galaxy’s environment, and one that our biology is equipped to mitigate at ordinary intensities.  It’s all actually surprisingly straightforward.

So, without further ado, here goes – a post in two parts…

PART I – Radiation and Radioactivity Explained in 60 Seconds:

The Atom

This is a generic diagram of the atom, which in various combinations of the same bits and parts is the basic unique building block of all matter in the universe:

Atom_Labels

This somewhat simplified view of an atom is what makes up the classic “atomic” symbol that most of us were exposed to at the very least in high school.

Radioactive Atoms

However, what is almost never explained in school is that each atomic element comes in different versions – slimmer ones and fatter ones.  When an atom’s core gets too large, either naturally or artificially, it starts to radiate bits of itself away in order to “slim down.”  This is called being radio-active.

So, there’s nothing to “radiation” that we all haven’t been introduced to in school.  Radiation is the name given to familiar bits of atoms (electrons, protons, neutrons) or beams of light when they’re being flung away by an element trying desperately to squeeze into last year’s jeans… metaphorically-speaking, of course.

Here is a diagram illustrating this process.  (Relax! – this is the most complicated-looking diagram in this post):

RadioactiveAtom_Radiation_Labels

So, when a radioactive element has radiated enough of itself away and is no longer too large, it is no longer radioactive.  (We say it has “decayed.”)

That’s it!

That’s as complicated as the essential principles of radiation and radioactivity get.  It’s just basic chemistry that isn’t covered in high school, (though in my opinion it should be!).

PART II – Take-Home Radiation Infographics

So, in an effort to help arm you against the rampant misinformation out there, here is a collection of simple diagrams explaining what everyone out there seems to get wrong.  (Feel free to promote and/or distribute with attribution!)

First, what’s the deal with “atomic” energy/radiation versus “nuclear” energy/radiation?  Do they mean the same thing?  Do they not?  Here’s the skinny:

AtomicvsNuclear_labels

That’s all.  “Nuclear” means you’ve zeroed in on an atom’s core, whereas “atomic” means you’re talking about something dealing with whole atoms.  No big mystery there.

Next, here is a simple diagram explaining the three terms used to describe radiation that are commonly misused in the media, presented clearly (click to enlarge):

MisusedTerms_labels

(Armed with this, you should be able to see why saying something like, “The radiation is releasing contamination!” doesn’t make a lick of sense.)

Now, here is a diagram explaining the natural sources of radiation we’re exposed to everyday on planet Earth:

RadiationNaturalSources_labels

And here are the basic principles of radiation safety, all on one, clean diagram (click to enlarge):

RadiationSafetyv2_labels

The End! 

Despite the time and effort spent socially (politically?) promoting an obscured view of this science (or so it seems), there is nothing more mysterious about radiation than what you see here.

Please feel free to contact me with any questions, and remember:  We have nothing to fear but fear itself!

Semper Exploro!





Japanese lunar light farming

1 06 2011

Rendering of a solar array ring on the Moon's surface. (Credit: Shimizu Corporation)

Definition of mixed emotions: Reading an ambitious plan recently released by the Shimizu Corporation of Japan that effectively wields fear of radiation to incentivize lunar colonization for solar power generation. 

Wow.  While I abhor anything that preys upon the irrational fear of nuclear energy, I’m all for the use of solar power.  (I’d like to make the ironic point here that “solar power” is also nuclear energy – the result of a giant nuclear fusion reactor, albeit a natural one.)  I’m also certainly for anything that makes an extraterrestrial business case, and I further endorse any plan that leads us off-world so that we can begin developing the practical know-how to live there.  Throw in the fact that the endeavor would ease stress on the terrestrial ecosystem at the same time, and the idea seems like a home run.

Diagram depicting the lunar power delivery process. (Credit: Shimizu Corporation)

How does it work?  Quite simply.  Called the LUNA RING, solar arrays are to be installed across the lunar surface in an equatorial belt.  Panels on the sun-facing side of the Moon then deliver energy via circumferential transmission lines to laser and microwave transmitters on the Earth-facing side.  These transmitters then beam the energy to receiving stations on the Earth, providing power enough for all.

Sound too good to be true?  Well, it may be.  The problem, like many great ideas, is funding.  The technology is all but completely available to make an attempt, but the capital costs here are incomprehensible.  Yet-to-be-invented tele-robotics plays a major role in construction, (which as I’ve previously mentioned is a very smart move,) and when weighed in combination with untried lunar transport, operations, and manufacturing techniques, equates to a seriously steep R&D curve.

However, this sort of distance planning can demonstrate that the basic elements already exist, which may be exactly what we need to convince  governments and the power industry that the venture is possible.  And, if Japan suddenly puts the economic weight of the government behind a plan like this, e.g., by making a call to return to the Moon and by actually launching small-scale versions of this system, then we should all take note… and I believe we should all participate.

The International Space Station is an endeavor that has and will continue to benefit many.  An international effort to establish renewable lunar-terrestrial power production can benefit everyone, both immediately as well as by developing the skills we’ll need to expand into the cosmos.

Good on ya’, Shimizu Corporation, for thinking big.  Hopefully it’ll catch on.





Confronting radiation fears through symbology

14 06 2010

Traditional Radiation Trefoil Hazard Symbol.

Just a quick note today on radiation and the irrational fear it provokes.  -Take it from someone who works around “rad” professionally in nature and in industry: Radiation isn’t scary.  It’s normal.

Radiation comes from the sun above, the mountains around, the soil beneath, our wi-fi routers, radio stations, and heck – our own bodies emit infrared and gamma radiation, just like radioactive waste.  (Though, granted, at a much lower intensity.)

Micro-waves are, literally, radiation. Yes, you "nuke" your food in a microwave oven, (though there's no danger of making the food radioactive itself.) Microwave radiation is harmful, which is why all microwave ovens are discreetly engineered as "Faraday Cages" - the same protective housings that the military uses to protect sensitive electronics from nuclear blasts.

While some radioactive elements emit particles as well as “energy,” the simple truth is that the same electromagnetic waves that stimulate our retinas (visible light) are identical in form to the elctromagnetic waves that warm our hands in gloves (infrared rays,) cook our food (microwaves,) burn our skin (ultraviolet waves,) check our bones (x-rays,) and that on the extreme end can be very physically harmful to our tissue (gamma-rays and cosmic rays).  Think of them as colors our eyes can’t see.

That’s it.  That’s all there is to it.  Radiation is natural, not just man-made.  We grew up around it, and our bodies are built to take it.  There’s even a fair amount of serious research to suggest moderate exposure to radiation helps keep us healthy by stimulating our defense systems.

So, why the mystique?  Tradition.  Radiation is associated with atomic bombs, nuclear holocaust, physics perceived to be too complex for any ordianry person to understand (which is completely untrue,) and it’s invisible to human senses.  General misunderstanding is the culprit when we really have nothing to fear but… yes, fear itself.

Radio waves are radiation, too, (even though the waves are generally too large to cause harm to our bodies.)

Now – this fear is really getting in the way of some important developments in power, propulsion, and industry.  What can we do to counter such pervasive fear?  Perhaps we should call it like it is.

See the included examples of microwave, radio, etc., radiation symbols that accurately place radiation with radiation.  Enough with the marketing – call an apple an apple. 

Perhaps if we started putting these symbols out with our appliances and various gadgets and at beaches to denote the threat of sunburns and skin-cancer, we’d realize that not all radiation is truly harmful, and that the radiation that is a hazard is something we’re more than capable of dealing with – and that we really already do.  After all, what is sunscreen but a mild, high-density radiation shield?  (Ever wonder why sunscreen is so thick?)

Two cents.

Perhaps something like this out at pool decks and beaches would stress the need for sunscreen? It's compeltely scientifically and technically accurate, too...








%d bloggers like this: