The “Wow! Reply” – SETI Stunt, Science, or Threat?

22 07 2013

A little less than a year ago, the  National Geographic Channel (NatGeo) executed a truly novel crowdsourcing initiative that I feel is deserving of greater critical attention.

Hailed by some as innovative public engagement, derided by cynics as mere marketing spectacle, and condemned by others as a threat to our very way of life, hindsight suggests that this bold and yet somewhat understated event may have been the most significant contribution of the entire (and much maligned) television project.

The Wow! Reply

Specifically, the initiative’s concept was to solicit tweets from the public, collect and compress them into a digital package, and then “beam” the collective message into space as a potential reply to the famed, so-called “Wow! Signal.”

[The Wow! Signal refers to a 72-second-long radio signal picked up momentarily by SETI’s Big Ear radio telescope in Ohio on August 15, 1977.  As an enigmatic signal that appeared for all the world to represent Search for Extra-Terrestrial Intelligence (SETI) paydirt, it remains to this day arguably the strongest candidate for radio evidence of extraterrestrial life, though that isn’t saying all that much, as the signal has never been rediscovered for confirmation.  As a result, current SETI Institute director of interstellar message composition Douglas Vakoch has claimed that the signal has received more attention than it scientifically merits.  …But that’s a different story.]

In short, NatGeo was keen to supply anyone with access to a computer or smart-phone a chance to say something to the rest of the universe, all in promotion of its newest extraterrestrial-life-themed television show.  There were no restrictions on public participation or the content of anyone’s messages, save the 140-character limit built into Twitter tweets.

In my experience, this so-called “Wow! Reply” was a definite first:  An innovative collaboration between public media and research academia – in this case NatGeo and the famed Arecibo Observatory – that manifested as a public-outreach and active-SETI experiment on a global scale.

The Reply was ultimately successful (in that the interstellar broadcast was successfully performed from Arecibo), and the transmission was targeted back toward the location of the original Wow! signal precisely 35 years to the day from the original signal’s receipt.

An ambitious undertaking for an endeavor entirely conceived and funded to generate interest in a television show, indeed!

However, to understand the varied reactions to the Reply, it’s necessary to first explore how and why the Reply was crafted and executed in the first place.

Arecibo – the largest single-dish telescope in the world.
(Credit: National Astronomy and Ionosphere Center [NAIC]/Cornell U./NSF)

Designing an Interstellar Hook

The idea of the Reply was innovated by Campfire, a consulting firm specializing in “transmedia” storytelling (involving multiple media forms and channels).  The initiative itself was kicked off by soliciting Wow! Reply videos from celebrities and scientists, (to which I contributed).

Some of these videos were over-the-top, while others were serious and science-based.

A personal favorite is Stephen Colbert’s riff on the event.

-In any case, for something as seemingly esoteric as radio SETI, (which is essentially radio astronomy), this was an unprecedented amount of exposure!

Alongside, official word from National Geographic Channel was somewhat divorced from the show it was loosely designed to promote while being surprisingly inspirational and forthright in tone:

“We wanted to come up with some sort of social experiment where we would galvanize people to tap into the curiosity about whether there is life and intelligence elsewhere.”  (Courtney Monroe, NatGeo spokesperson)

“…curiosity around the Wow! Reply is rooted in one of mankind’s oldest unanswered questions: Are we alone in this universe?” (NatGeo Wow! Reply website)

“…[Intelligent extraterrestrial life] would have to decode [the Wow! Reply].  We have carefully structured our encoding and transmission so that it would be difficult to recognize the signal as anything random.  However, decoding the messages … They simply would not have the social context to do that. …no one involved in this project sees it as a truly scientific step toward finding intelligent life in the universe.  After all, this is not a SETI project. … But, that doesn’t mean it’s not a fun exercise, designed to provoke a whole range of questions and conversations down here on Earth – what do we believe is our place in the cosmos?  If we had to sum up the human experience for another civilization, what would we say?” (NatGeo Wow! Reply website)

Ultimately, one could say the Reply served its purpose, as more than 20,000 people tweeted specific messages on the appointed date (June 29, 2012) in order to be included in the transmission, and countless others were made more aware of SETI, radio astronomy, and the existence of the Wow! Signal as a result.

But forgetting the far-fetched and tantalizing possibility of contacting aliens for a moment, what of our own reactions to the Reply?

The Wow! Reaction… from Us.

Prior to the Jun 29 2012 tweet-collection date, there was significant and generally neutral-positive press coverage of the Wow! Reply, which crossed public and professional-level publications, including articles from Slashgear, Huffington Post, and Phys.org.

Unfortunately, however, any fanfare associated with the Reply was quickly siphoned and/or overshadowed by its association with the premier of a television show that, regrettably, communicated a much less scientific or exploratory message.

The press coverage quickly shifted toward neutral-negative, as seen in this NPR article, fading by the time of the transmission of the Reply itself to a simple, short blip on the newswire, exemplified by this NPR piece.

Then, coverage vanished entirely.

Now, a little less than a year later, the collective response from the scientific community and the general public on the Reply has been mixed, running the gamut from enthusiasm to fury.

Why mixed, you might ask?  What could possibly be perceived as negative about something that engaged so many people in the history of science, the wonders of radio astronomy, and possibility of life in the universe?

For the answer, let’s step squarely out of the realm of public media and discuss what NatGeo, wittingly or unwittingly, really engaged in when they conspired to undertake the Reply: METI, or Messaging Extra-Terrestrial Intelligence.

The original 1977 print-out of what, based on the note written on the paper's margin, became known as the "Wow! Signal."

The original 1977 print-out of what, based on the note written on the paper’s margin, became known as the “Wow! Signal.”

Intragalactic Smoke Signals

Sending a message between stars may sound straightforward enough, but actually accomplishing the collection and broadcast of 20,000 tweets into space is a non-trivial technological feat in and of itself.

Addressing the problem of creating something even hypothetically translate-able by a non-terrestrial civilization is an altogether separate and even more daunting task.

Now, it should be mentioned that we – humanity – have been broadcasting signals into space since television broadcasts first began.  Our radio signals travel upwards and out into space in addition to traveling sideways where the antennae on our old TV sets would be best positioned to receive them.

Much like a beacon, these signals travel outward at the speed of light with time, some of which may have reached as far as 80 light years distant from us since then, (a radius that includes upwards of 5,000 stars!).  And crudely, like a smoke signal, the on-and-off of these transmissions has the ability to hypothetically alert another civilization (with the technology to detect them) to our presence on the galactic scene.

File:Arecibo message bw.svg

The 1974 Arecibo Message.

However, with all of this in mind and especially considering that SETI itself is approaching half of a century of maturity as a scientific pursuit, many are surprised to learn that a broadcast with the specific intent of transmitting information to – i.e., communicating with – hypothetical Extra-Terrestrial Intelligence (ETI) has only been attempted eleven times in human history, nine of those being prior to the Wow! Reply.

Think about that.  Eleven times since we developed radio technology.  That’s the galactic equivalent of being trapped in a basement for a year and only calling out for help on the order of (very, very generously) 3 hours.

Not very good odds of being heard at all.

Most notable amongst these earlier transmissions was the Arecibo Message of 1974, a powerful, 210-byte message created by eminent SETI scientist Frank Drake and astronomer Carl Sagan, which was aimed at M13 – a star cluster located a cool 25,000 light-years from Earth.  (Read: It will be 25,000 years before that message reaches its destination! …but a quirk of astrophysics dictates that the stars won’t even be there by the time it gets there.  Everything is moving, after all.)

After that, it is interesting to note that the next message wasn’t even attempted until 25 years later, in 1999 (Cosmic Call 1).  The remaining six broadcasts were conducted in the aughts (2000-2010).

Now, and literally aimed a bit closer to home, we finally arrive at the NatGeo Wow! Reply on August 15, 2012.

The Wow! Reply Transmission

So, how was the Wow! Reply itself transmitted?  Using the Arecibo radio observatory’s formidable 1-megawatt  continuous-wave (CW) S-band transmitter, the project organizers used a 2380 MHz (12.6 cm wavelength) carrier wave to send what promotional materials referred to as a “global tweet” into space.

More specific technical details of the Reply’s assembly, construction, encoding, and transmission have been, somewhat surprisingly, fairly hard to come by.  Even more curiously, I was ultimately able to recover this information in a primary-source context only from an article removed from the National Geographic website not long after it was posted.   (I’m honestly not sure what to make of that.)

In any case, here goes.  Because of uncertainty in the source location of the original Wow! Signal, the Wow! Reply was targeted toward three different stars, which were each selected based on a trio of criteria.  Namely, they were selected based on their location, proximity to our own star system, similarity to our sun, (and I suspect a fair amount of opportunism with respect to the dish’s orientation at the time).

The ultimate winners were/are:

It’s a bit sobering to not just imagine but to know that these stars are not just numbers in a database but are actual stars, whirling about the Milky Way in the precise fashion that our sun does the same, dragging the Earth and the other planets along with it.

And like our Sun, we actually know that at least in one of these cases, these stars are also surrounded by actual alien worlds.  A system of planets not unlike our own.  Astronomers and planetary scientists call them Extrasolar Planets, or Exoplanets.

Comparison of the inner planets of en:55 Cancri and the innermost three planets of the Solar System.  (Credit: Wikipedia user Chaos syndrome)

Comparison of the inner planets of Wow! Reply recipient star system 55 Cancri and the innermost three planets of our Solar System. (Credit: Wikipedia user Chaos syndrome)

Specifically, there are at least five planets orbiting the yellow dwarf star within the 55 Cancri system (see the above image), one of which may skirt that system’s habitable zone. In other words, not only are they available to harbor hypothetical alien life, but one planet in particular (unceremoniously titled) “55 Cnc f” may even be able to support life as we already know it.

A heady endeavor, indeed.  But what is it we actually sent there (to arrive in the year 2053)?

To prepare the message to be delivered to each of these stars, all of the public videos and tweets were first converted to binary data.  Then, scientists at Arecibo were claimed to have added what they refer to as a “training header” to help a hypothetical recipient decode the message, as well as regular repetitions of header sequences prior to each tweet (meaning at least 20,000!) to help distinguish the signal from cosmic noise.

Then, at the power level mentioned above, which is roughly 20 times greater than the most powerful conventional radio transmitter, the enormous surface area of the Arecibo antenna would have boosted the signal to an effective power of more than 10 TeraWatts.

For reference, this is enough power (properly harnessed) such that Doc Brown could have sent Marty McFly back to the future more than 8,000 times.

Pretty powerful, indeed.  But then again, it would have to be.  The nearest star on the recipient list is, in conventional distances, 2,410,000,000,000,000 (nearly two-and-a-half quadrillion) miles away.

And as for how to make the 1 and 0 parts of the radio message, astronomers use what is known as a Binary Phase Shift Keying modulator that literally flops the carrier signal to represent up or down, or 1 and 0.

Now, having sent the Wow! Reply is one thing.  The idea that an extraterrestrial civilization could produce any meaningful information from it is another entirely.

Carl Sagan, one of the first serious proponents and implementers of interstellar messaging.

Carl Sagan, one of the first serious proponents and implementers of interstellar messaging.

Communicating with the Unknown 

The odds of translating an alien message is remote.  Vastly remote.  So remote, in fact, that NatGeo in their own description of the event declares the possibility to be zero:

“[An alien civilization] simply would not have the context to do that.”

So, was this all in vain?  Has the truth of the advertising and marketing aspect of this endeavor finally been laid bare?  Well, not necessarily.  While the broadcast may have been a blast of indecipherable binary code, it may still function as a lighthouse-style beacon, and further, it provides excellent context for explaining the difference between so-called Active SETI and METI here at home.

The Chief Scientist of Russia’s Institute of Radio-engineering and Electronics Alexander Zaitsev has eloquently laid out the argument for the difference between and importance of SETI and METI in his paper, “Messaging to Extra-Terrestrial Intelligence.”

Quite simply, on the one hand the mission of SETI is to produce confirmation of extraterrestrial intelligence.  From this inward-directed vantage, messages such as the Wow! Reply seem to be of little value, as they present a disappointingly remote “shot in the dark,” as it were, of being received, translated, and acted upon.

However, METI proponents possess a much more outward-directed motive, which is to not only ideally communicate with ETI but also to inspire their Wow! Signal moments, even if they are unable to reply.  What a mental back-bend to consider such a possibility!

In Zaitsev’s words,

“METI pursues not a local, but a more global purpose – to overcome the Great Silence in the Universe, bringing to our extraterrestrial neighbors the long-expected annunciation “You are not alone!””

Clever work is being done today on the design of universally-translate-able METI, such has modulating the signal itself to represent physical elements, (e.g., invoking pattens in the radio wave itself so that it serves as the message), yet Zaitsev’s point is that doing so may not even be essential to fulfill a much more significant role to another civilization.

The Hawking Warning

So, that brings us to the next chapter of this interstellar adventure, which is the opposition to METI.  It’s easy to imagine the benefits of such a philosophically-lofty endeavor, e.g., inspiring a “first contact” moment with another civilization that has the capacity to, in turn, broaden our cultural horizons to include a galaxy that has satisfied one of our longest-standing questions – revealing that we are indeed not alone!

However, what of the potential pitfalls?

As it turns out, objections to METI are not new.  In reaction to the famed Arecibo Message of 1974 mentioned earlier, Nobel laureate and astronomer Martin Ryle championed that any attempted extraterrestrial messages be strictly outlawed, at least pending some sort of rigid global review and risk assessment.

Why?

In what may be seen through the lens of future history as either paranoid or prophetic, Ryle’s objections were repeated in 2011 by eminent physicist Dr. Stephen Hawking, who issued an infamous alert warning humanity away from attempting to contact extraterrestrial life.

For someone as engaged in public science outreach as Dr. Hawking has been throughout his career, the proclamation was seen by many as puzzling or counter-intuitive.  However, his concerns were based on hard historical data – something that is obviously difficult to come by when talking about any scenario for which we have no practical example.

In Hawking’s words:

“If aliens visit us, the outcome would be much as when Columbus landed in America, which didn’t turn out well for the Native Americans … We only have to look at ourselves to see how intelligent life might develop into something we wouldn’t want to meet.”

Now, there is nothing saying that this must be the case, but the objection certainly merits critical thought.  If relevant, shouldn’t any attempts at interstellar contact be limited as these precautionists warn – at least until we possess a means of planetary defense?

And if the concern is not applicable, why not?  Can we be sure?  (This relates in a way to what I like to refer to as the Andromeda Strain and War of the Worlds spectrum for interplanetary or interstellar lifeform interactions…)

Jamesburg Earth Station, currently transmitting for the Lone Signal project.

Jamesburg Earth Station, currently transmitting for the Lone Signal project.

Domino Effect: The Lone Signal

In perhaps the most intriguing development of all, it appears that the concept of the Wow! Reply earned the attention of an entirely unexpected group – public outreach space scientists themselves.

Just last month, a crowdfunded METI/Active SETI program called Lone Signal began continuous operation at California’s Jamesburg Earth Station.  In a strikingly-similar sort of outreach initiative to the Wow! Reply, the objective of Lone Signal is to continuously transmit “tweet”-sized messages from the public toward Gliese 526, a red dwarf star located a mere 17.6 light years away.

Lone Signal began sending these transmissions on June 17 of this year.  If successful, they hope to activate a network of stations across the Earth, greatly enhancing our star system’s galactic profile, in a manner of speaking.

As for Hawking’s warning about the dangers of exactly such an increase in visibility to the brotherhood of advanced and potentially-threatening alien civilizations that may or may not exist?  Lone Signal’s chief scientist has stated that he believes any nearby advanced extraterrestrial civilizations are already aware of our existence due to radio leakage, and humanity’s previous high-power transmissions could be detected with relatively simple equipment.

While engaging the public in an active outreach program, Lone Signal hopes to resolve what is essentially another civilization’s Wow! Signal problem – since our previous broadcasts have been short bursts that have never repeated, any civilization just tuning in could have caught just a fragment.

Lone Signal aims to broadcast continuously for the foreseeable future, giving other civilizations that which we ourselves have yet to find: the power of confirmation.

The Wisdom of Active SETI and METI

You be the judge.  Was the Wow! Reply the first in a series of media efforts to engage the public in a world that extends beyond our horizons?  Was it simply advertising masquerading as science?  Will it be looked upon as the lure that attracted what may become an unprecedented future conflict over resources with life hailing from another star system?  Or might it hasten the day that we realize we are not alone in the universe, helping us resolve our internal quarrels and participate in a broader spectrum of interactions in our stellar neighborhood already in play?

Time will tell.

But this is the conversation I sincerely wish we would have been in a position to facilitate a year ago.

Comments welcome.

Advertisements




The Environmental Case for Extraterrestrial Resources

17 07 2013

During recent travels over the heart of our nation’s fossil fuel development and storage centers, a realization descended upon me in a new and sudden way.  As I peered out of my porthole window at the landscape below, it struck me that a simple glimpse at the current state of our world is the only justification needed for developing extraterrestrial resources.

A picture, as the saying goes, is worth a thousand words:

Drilling Pads

Take a closer look.  Different aspects of the image will no doubt strike individual readers first.  But as for me, I saw for the first time a jarring and unsettling truth.  Quite unexpectedly, I was assaulted by the reality that between agricultural development and subsurface mineral resource exploration and extraction, no native portion of the planet’s surface remained as far as I my eyes could take me.

I reached up and took a picture with my phone, seeing for the first time the image of a planet not new but used – a surface completely consumed or discarded.  It was the very first time I’ve had a negative visceral reaction to the breadth of our civilization’s development of the Earth’s surface.

The thought quickly followed that, with an ever-expanding population and given the current course and nature of our civilization’s growth, this is the least developed our world will ever be, barring some sort of apocalyptic natural disaster.

My mind then immediately turned to the idea of life support.

The Holy Grail of Space Exploration

From a space exploration perspective, the idea of the Closed Ecological Life Support System (CELSS) is a critical one.  The holy grail of human space exploration, CELSSs are a natural, self-sustaining life support system, (e.g., a collection of plants that feed us, purify our waste, and supply our air, while our waste, in turn, feeds the plants and supplies their air).

One can quickly see that possessing functioning CELSS technology would enable our ability to establish long-term settlements on space stations, spacecraft, or colonies on other worlds.  We wouldn’t need constant resupply shipments from Earth.

On a massive scale, the Earth’s biosphere has managed to itself become a CELSS after great spans of geologic time and the cooperative adaptation of biology with it.  Unsurprisingly, our biosphere serves as the very (only) natural template for current CELSS research.

So, like the importance of a spacesuit to a lone astronaut on a spacewalk, what struck me as I gazed our of the aircraft window at our pervasive impact on the environment is that our biosphere is all that stands between us and the great, inhospitable reaches of space.

Damaging our species’ only functioning life support system by compromising our biosphere is a terrifying proposition.  Just as was the case with timber resource utilization early in this nation’s development – the rude awakening that what was perceived to be a limitless resource was instead all-too-finite – so too might it be time we open our eyes to the realities of our finite world from a life support perspective?

The first Earthrise imaged by a human.  B&W, Magazine E, Apollo 8.  (Credit: NASA)

The first Earthrise imaged by a human. B&W, Magazine E, Apollo 8. (Credit: NASA)

Encouraging a Planetary-Perspective Paradigm Shift

Whereas the rationale our society has adopted in implementing better sustainability practices, such as recycling, is to “protect the environment,” I was awakened to the reality that from a planetary perspective a greater truth is the reverse:  It is not humanity that protects the Earth’s “environment,” rather, it’s the Earth’s biosphere (environment) that protects us – from asphyxiation and starvation in orbit about the Sun.

So, if we can encourage a broader (and I dare say more scientific) view of our world in the cosmos, we might all come to view our biosphere not as simply “the Environment” in which we live but instead as a crucial, planet-scale, natural life support system operating to keep us all alive in the dark, unforgiving, and unyielding reaches of space.

Such a paradigm shift, which could be driven by one, simple directive – to preserve our global biosphere as a planetary resource – logically compels our development in two directions:

  1. Minimize the surface area impact of what must be located or conducted on Earth’s surface.
  2. Maximize the impact of that which can be located or conducted off-world.

Should we accomplish the task of even beginning such a conversation, the right sorts of questions will follow:

  • Can we consolidate, enable, and focus mining operations in areas of less biospheric importance?
  • With limited land surface area, can we take advantage of much more plentiful airspace for agriculture, (e.g., vertical farming, or perhaps explore even the possibility of aerostat-based agriculture?)
  • Alternatively, can we increase the use of marine farming (mariculture)?
  • Might not we lessen or reverse the burden of natural resource utilization on Earth’s biosphere via the development of off-world mineral resources?
  • After that, could we begin a shift toward extraterrestrial agriculture and export back to Earth?  (The Moon is a Harsh Mistress, anyone?)

By merely engaging in this mode of thought in a culturally-significant way, it seems possible that not only would we develop and promote the use of extraterrestrial resources, but we could and would simultaneously become smarter about the way we structure our communities and settlements here on Earth.

Where does this lead?  Well, it seems to me that the clearest path is the serious, practical use and implementation of Arcology research, which is something I believe we as a civilization are ready to pursue in earnest.

In other words, an inevitable outcome of leveraging and fully harnessing the technological advances at our fingertips to actively preserve greater portions of our planet’s biosphere would promote our civilization’s growth and maturation along two fronts – the creation of an extraterrestrial infrastructure and economy, and the development of sustainability technologies that would improve life for us all.

A Call for Wiser Expansion

While certainly I’m not the first to voice these sorts of opinions, nor was this the first time I’ve considered these sorts of concepts, there was something fundamentally different about the experience I had as I was flying above majestic portions of the country, witnessing what for the first time appeared to my eyes to be the subtle but pervasive erosion of our species’ only life support infrastructure.

It was the context.

Thinking of the Earth as a closed life support system not from within but from beyond, as a system sustaining us against a vast and threatening cosmos, it struck me that elevating our collective views above and beyond our world’s horizon may be more than just financially lucrative and scientifically fruitful.

In working to shift the burden of our growth off-world, and considering the social perspective shift that doing so will require with respect to the way we view our own civilization, (e.g., as a people for the first time directly connected to an environment that extends beyond our planet), we should reinforce the pursuit by simultaneously cultivating a view of our world’s biosphere as an ultimately rare resource – or perhaps even the rarest natural resource (as the only known, functioning CELSS to-date!).

In doing so, perhaps we can accomplish several worthy objectives at once:

While lengthening the useful span of our planet’s life support system, we could also inspire and challenge ourselves to finally become smarter and wiser about how we populate our world… and in the process, start thinking seriously about how we move beyond.





Science outreach, crossing the mainstream divide, and “Chasing UFOs”

24 05 2012

Hosts James Fox, Me, and Erin Ryder during the filming of National Geographic’s “Chasing UFOs.” (Credit: David West)

I know there will be quite a lot on this here at the Astrowright blog in the coming weeks and months, but to begin very briefly, I’m excited to report that I’m set to appear on/host a National Geographic series next month (somewhat sensationally) entitled, “Chasing UFOs.”  

The project zeroed in on the “top 5%” – the most bizarre or inexplicable – of all alleged unidentified flying object cases in history.  However, unlike previous programs, in addition to firsthand interviews, we physically travel to the site of each alleged event, whether on a mountaintop or in the Amazon, to see if any material evidence exists to support extraordinary claims.

Aside from the “field adventure” component, the show’s presentation is novel in that three different viewpoints are represented in each case – skeptic, believer, and “agnostic.”  I’m thrilled that NatGeo has endorsed including someone like me on a project like this – essentially allowing the scientific/skeptical viewpoint to be heard. 

This is ultimately why I decided to engage in the project in the first case. 

For those who have been reading this blog for any length of time, it is obvious that I sit squarely on the skeptical side of the fence.   (In my view that’s the side that history ultimately bears out.)  However, I’m also comfortable enough in my own “scientist” skin to be willing to dive into any question, even if it has been (perhaps justifiably) shrugged off by mainstream academia.  This is particularly true when it concerns something for which there is a great deal of public interest and that exists in such close proximity to my personal passions – planetary science and space exploration.  In my view, the important thing to note is that people curious about UFOs are asking the right sorts of questions:

  • “What is going on in the night sky?”
  • “Are we alone in the universe?”
  • “What is the possibility of extraterrestrial life?”

-And with pseudoscientific, speculation-riddled and archaeology-confounding programs out there like “Ancient Aliens,” if scientists refuse to engage in mainstream media and contribute to the conversation, the conservative scientific viewpoint will rarely (or worse, never) be heard or explained.  If it is obvious to an astronomer that a flashing “UFO” is simply light from Venus on the horizon taking a long path-length through the atmosphere, and he or she doesn’t bother to explain it, science doesn’t stand a chance in the face of a passionate “talking head” declaring it to be proof of extraterrestrial intelligence in our own skies.  We fail twice – first to capture an excellent learning moment and secondly in that we ultimately succeed only in disenfranchising a curious public with respect to the scientific establishment.

As anyone in the sciences knows, STEM outreach needs all the help it can get.  We have to engage.  (And who knows?  I’m open to the possibility that people have really seen something extraordinary if evidence backs it up, though I would be just as excited were it to be exotic high-altitude electrical phenomena as opposed to green men from Mars.)

So, here goes.  Set the time circuits for June 29, 2012 at 09:00 on the NatGeo channel.  I haven’t seen the finished product myself, but I know what we did and guarantee it to be an action-packed, thought-provoking ride. 

Tune in and please feel free to let me know what you think!





Cycloidal Ridges on Europa: A Xenoarchaeological Analogue

7 05 2012

Jovian moon Europa. (Credit: NASA NSSDC)

When seriously considering the possibility of xenoarchaeology as a practicable science, I’ve proposed (as have others) the endeavor to be deeply interdisciplinary.

Solid archaeological methodologies will need to be complemented with and modified by a strong foundation in planetary science.

I also often suggest that the practice of xenoarchaeology will find its most frequent utility in “debunking” rushed, biased, or outright pseudoscientific claims.  In many cases, it seems sensible to presume this may appear strictly as planetary science applied in a feature-analysis context.

So, with this in mind, I’d like to look at the mysterious case of “cycloids,” or specifically, “cycloidal ridges” on Jupiter’s second moon, Europa:

Cycloidal double ridges viewed in the northern hemisphere of Europa (60°N, 80°W): Striking evidence that nature can produce apparently-artifical features on other worlds. (Modified from Hoppa et al., 1999)

Jovian Cycloids

Found across both hemispheres of the barren, fractured ice world, these double-ridges are vast – nearly half a mile tall and half-again as wide – and shockingly symmetric, with apparently perfect vertices connecting each sweeping arc.  They exhibit a puzzling nature to parallel nearby ridges, as though “drawn” on the surface of the world in series, yet they then suddenly conflict with ridges curving the opposite direction.

The features were, at the time, truly bizarre, with no understood natural process to account for them.

While due to their immense size and their relatively-obscure nature, no one (to my knowledge) actually suggested them to be the result of Extraterrestrial Intelligence (ETI).

However, due to the cycloids’ striking geometry, I feel them to be a perfect example of an analogue scenario where a scientific xenoarchaeological hypothesis might be entertained.

Still don’t see them?  Look at the features highlighted here in red.

Icy Geoglyphs?

So, let’s say for the sake of argument that a popular case had been made that these were “Europan geoglyphs” – symbols or markers left behind by an ancient extraterrestrial civilization.

While it is often difficult to explain to non-scientists the ultimate importance of seeking to disprove a working hypothesis, in this context the utility of taking such a stance becomes clear.  With any potential xenoarchaeological site or artifact, the first order of business will be to characterize the planetary environment in order to rule out natural causes.  Only then would an archaeological-style investigation proceed, evaluating site context, invoking potential inference-by-analogy, etc.

In the case of Europan Cycloids, given a thorough and persistent site evaluation, a principal xenoarchaeologist, (being interdisciplinary and a capable planetary scientist by necessity,) would have identified that these features could have been caused by tidal forces from Jupiter.  Therefore, the ETI hypothesis is unnecessary, and with no other supporting evidence to suggest the presence of extraterrestrial life, should be refuted.  (To verify the more prosaic explanation from a more archaeological perspective, one might then investigate possible astronomical alignments with respect to the cycloids, [see: archaeoastronomy,] yet these would all point – literally and figuratively – to Jupiter itself, leading to the aforementioned cause.)

Case closed.

Avoiding the Tendency to Cherry-Pick

Why take this approach?  Why be so eager to rule out the “fun” option?  Simple:

In order to challenge the innate predisposition toward bias common to us all, one must work against the preferred hypothesis, not toward it.  (See also: cherry-picking fallacy.)

Now, had the features been discovered on a moon experiencing much less tidal stress, the story might be different…  (One might investigate in-situ geochemistry or seek more up-close imagery to search for detailed evidence of possible machining.)

-But one simply cannot go there first because the implications are possibly thrilling.  It is, in fact, because the ETI hypothesis is fantastic that one must work to rule it out.

This is the fundamental consideration that separates science from pseudoscience, which cannot be overemphasized when proposing something new, (i.e., xenoarchaeology.)





Xenoarchaeology Critical Mass

29 12 2011

The recovery of an alien artifact from the TMA-1 lunar excavation site in 2001: A Space Odyssey (Credit: MGM)

Xenoarchaeology Rising

2011 has been a good year for the nascent pursuit of xenoarchaeology as serious science.  After beginning a conversation with a 2010 Viewpoint article I authored in the journal Space Policy, which was intended as a broad, conceptual justification for the further development of xenoarchaeology as a field, I was rewarded with a generally favorable review from Spacearchaeology.org as well as some fruitful academic sparring with a public relations specialist sporting a long-standing grant from NASA’s Astrobiology Institute (more on the aforementioned fruit to follow).  

Now, I am quite pleased to note that 2011 has seen other space science researchers open up to the idea that conceptually setting up the rigorous and credible search for (and investigation of) suspected alien artifacts is not only warranted, but due.

While most, it seems, find the concept of xenoarchaeology to be at the very least on the forward edge of scientific conception, it appears that an increasing number of scientists are coming around to the same conclusion that I did: For a field aiming for discoveries necessarily encased in enormous scientific and socio-political bombshells, a proactive stance is appropriate.  

Quite simply, now is the time.

With luck, we will soon reach a sort of intellectual critical mass cultimating in a formal xenoarchaeology workshop, the proceeds from which should lay out the groundwork for a new, practicable 21st-Century science.

To this end, I’d like to point out some of this recent relevant work:

Davies’ Footprints  

Eminent researcher Paul Davies of ASU’s Beyond Center penned an article in Acta Astronautica early in 2011 entitled, “Footprints of alien technology.”  Much in the same vein as my own article, Davies considers deep time in combination with the possibility of extraterrestrial life to conclude that there is a possibility of subtle biological, geological, and physical artifacts of xenobiological activity, even on the Earth.  He then suggests means to search for such trace evidence.

Searching Luna

Carrying his work a step further, Davies and undergraduate student Robert Wagner submitted an article this past fall, also to Acta Astronautica, entitled, “Searching for alien artifacts on the moon.”   Applying the logic distilled in the previous work against the current SETI paradigm, this paper details the relevance that indirect evidence of extraterrestrial intelligence in the form of non-human technology would play.  The article suggests a practical, low-cost application of a search for such evidence using increasingly high-resolution imagery of the lunar surface available to the public (via the Lunar Reconnaissance Orbiter, for instance). 

The practice of this remote sensing search, by very definition in my own article, would be considered a practice of xenoarchaeology. 

In point of fact, regarding the applicability of xenoarchaeological guidelines, this is an example of what I called “Scenario 1” in my 2010 article  – that being a remotely-conducted investigation.  This is in contrast to “Scenario 2” xenoarchaeology, being an in-situ human investigation (astronaut), and “Scenario 3,” an investigation involving artifact/sample return to Earth or terrestrial capture of an artifact.

Justifying Solar System Xenoarchaeology

Further hammering home that we have yet to reasonably exhaust the possibility of xenoarchaeological artifacts lingering in our own cosmic backyard, researchers Jacob Haqq-Misra and Ravi Kumar Kopparapu of Blue Marble Space Institute of Science and Penn State, respectively, also submitted an article to Acta Astronautica entitled, “On the likelihood of non-terrestrial artifacts in the Solar System.”  In it, Haqq-Misra and Kopparapu utilize a probabilistic approach to quantify search uncertainty in the Solar System.  They conclude that, “The vastness of space, combined with our limited searches to date, implies that any remote unpiloted exploratory probes of extraterrestrial origin would likely remain unnoticed.”

So, there you have it.  An exciting time, indeed, and further proof that the area is ripe for both academic and practical research!





Research supports possibility of non-terrestrial artifacts in Solar System

7 11 2011

In a professionally-risky but scientifically-admirable move that came as a bit of a shock to me, two Penn State University researchers recently authored a study that claimed, statistically-speaking, that not enough of the planetary surface areas (at sufficient resolution) and volume of the Solar System has yet been surveyed to rule out the presence of what they term “non-terrestrial” artifacts.  (For more information, see the PSU press story here.)

Archaeologists excavating an alien artifact in 1928 from the movie “Stargate.” (Credit: MGM)

According to the post-doctoral academics, “The vastness of space, combined with our limited searches to date, implies that any remote unpiloted exploratory probes of extraterrestrial origin would likely remain unnoticed.”

That this admission has been formalized is extraordinary news, for it reinforces the very impetus for my own work on xenoarchaeological guidelines; lending credence to the view that a proactive stance on the rigorous development of xenoarchaeology as a practicable field science (along with related communication strategies) is no less justified than that underpinning astrobiology or conventional SETI studies.

Curious to me from a terminology standpoint is the authors’ use of the term, “non-terrestrial.”  It certainly allows for a consistent discussion while avoiding the sensationalist baggage involved with the term, “extra-terrestrial.” 

Looks like the academic environment is ripe for the further development of xenoarchaeological methodologies and analogue work.  Stay tuned.

(For more information, see my original post here, and past related follow-up posts here, here, and here.)





Extrasolar maelstrom!

22 10 2011

This week might be considered a red-letter period for discoveries relating to extrasolar planets, from imaging alien comets and their implications for otherworldly oceans to witnessing the dusty disks and primordial protoplanets of young, forming star systems.

In case you missed it, this week provides your healthy dose of Exoplanetology:

Very “Wet” Extrasolar System Found

Artist's concept, illustrating an icy planet-forming disk around the young star called TW Hydrae. (Credit: NASA/JPL-Caltech )

The European Space Agency’s Herschel Telescope recently discovered direct evidence of cold water vapor surrounding the disk of dusty material surrounding a young star.

Whereas earlier studies had detected evidence of warmer water vapor within the material of young star systems, this is the first to extend this zone of water vapor into the cold regions extending far away from the parent star, TW Hydrae.

This finding is very significant to those searching for habitable planets or the life that might arise on them, as it bolsters the idea that comet-strewn planetary systems like our own (with water-rich inner planets) might be common in the galaxy.

Heavy Comet Bombardment Observed in Alien Solar System

Artist's concept, illustrating a storm of comets around nearby star Eta Corvi. (Credit: NASA/JPL-Caltech)

Evidence of the comet storms suggested in the previous discovery and which left their own scars on the rocky worlds of our own Solar System during the period called the Late Heavy Bombardment, (look up at the moon for evidence,) has been detected in the nearby star system Eta Corvi.

Tantalizingly, NASA’s Spitzer Space Telescope has detected evidence of a titanic comet collision(s) – dust fragments that match the signature of a comet having been wiped out during an impact with a planet.

Further, the location of the dust plume coincides with the potential location of inner, rocky planets like our own…

Forming Planets Likely Culprit Dust-Sculpters

View of two spiral arms in the gas-rich circumstellar disk around star SAO 206462. (Credit: NAOJ/Subaru)

In a wave of discoveries that don’t seem to be letting up, researchers using the Subaru Telescope atop Mauna Kea in Hawaii have released images of spiral arms in the dust disk surrounding nearby star SAO 206462.

These images, the first of their kind, agree with simulations of what the gravitational effects of newly formed or forming planets can do to the gas and dust surrounding a young star.  (Researchers are cautious to point out, however, that other processes might be responsible for the pattens.)

Beyond potentially further bolstering our understanding of how planets and star systems form, the spirals suggest locations of further research to find extrasolar planets… and provide yet another serious contender for desktop wallpapers everywhere.

Humankind First: Birth of an Alien World Witnessed

Artist’s conception of newly born alien planet LkCa 15 b and its parent star. (Credit: Karen L. Teramura, UH IfA)

Not to be outdone by the truly significant discoveries already mentioned, a team of researchers using the Keck Observatory in Hawaii have imaged the youngest alien world to date – so young, in fact, that it is still forming out of the disk of gas and dust around star LkCa 15.

Using sophisticated optical techniques, the team was not only able to resolve the protoplanetary disk around the star LkCa 15, but they were able to peer into the zone where the new planet was spawning – a wide gap between the young parent star and an outer disk of dust.

What they found there was truly a first:  A protoplanet surrounded by a sheath of cooler dust and gas still falling into/onto the still-forming planet.

In all, it appears that with an accelerating pace the universe is becoming less a tapestry to simply observe and more an atlas of locations and potential destinations.  Will the names TW Hydrae, Eta Corvi, SAO 260462, and LkCa 15 one day fill an atlas of solar systems the way we now appraise continents on a globe?

-And will the subtle letters behind each name, themselves indicating the presence of a planet, fill the same atlas as we currently manage nations and provinces?

We can only hope… but at this rate, odds are looking good!








%d bloggers like this: