Revisiting Schmitt’s National Space Exploration Administration

27 06 2012

(National Space Exploration Administration logo, as imagined by Ben McGee)

Nearly a year ago, famed geologist, former United States Senator, and former Apollo Astronaut Harrison H. Schmitt recommended what to many was the utterly unthinkable:

Dissolve NASA.

To be frank, I agree with him.

While to those who have paid even a passing visit to this blog, such an admission may seem completely counter-intuitive.  But the reality is not that Dr. Schmitt has suddenly turned his back on his own legacy, nor have I on our nation’s triumphant space program.

Far from it.

Honoring the NASA Legacy

In an essay he released last year, Dr. Schmitt made a direct call to whoever becomes President  in 2013.  In it, he made clear that only by wiping away the bloated, competitive, politically-crippled bureaucracy that NASA has become and by forging in its place a leaner, more focused, dedicated Space Exploration agency may we honor the NASA legacy.

The claim made waves when it was released, ruffling the feathers of many of his own contemporaries, but (like most other calls for action) quickly flared out and faded away.  Well, I want to re-open the discussion, as this was (in my humble opinion) a damn good idea and one that deserves further promotion and consideration.

With this in mind, let’s revisit his logic.

Leadership has Failed Our “Window to the Future”

To quote Dr. Schmitt:

  • “Immense difficulties now have been imposed on the Nation and NASA by the budgetary actions and inactions of the Bush and Obama Administrations between 2004 and 2012.”
  • “The bi-partisan, patriotic foundations of NASA … gradually disappeared during the 1970s as geopolitical perspectives withered and NASA aged.”
  • “For Presidents and the media, NASA’s activities became an occasional tragedy or budgetary distraction rather than the window to the future envisioned by Eisenhower, Kennedy and the Apollo generation.”
  • “For Congress, rather than being viewed as a national necessity, NASA became a source of politically acceptable pork barrel spending in states and districts with NASA Centers, large contractors, or concentrations of sub-contractors.”
  • “Neither taxpayers nor the Nation benefit significantly from this current, self-centered rationale for a space program.”

It’s actually fairly difficult to argue any of these points, particularly considering the reality that Schmitt comes from a rare position of authority on all points.  He’s a scientist who has bodily walked on the moon and seen the inner machinations of our congressional system as an elected representative.

But, how could we possibly create a new agency from NASA?  Schmitt points out that there is already a precedent for this sort of evolutionary change…

The Precedent for Creating NSEA Has Already Been Set … by NASA

When NASA was formed in 1958, is was forged by combining/abolishing two other agencies.  The first was the famed National Advisory Committee on Aeronautics (NACA), with its many familiar research centers, (e.g., Glenn, Ames, Langley,) which had been around since 1915.  It did not survive the transition.

The second was the Army Ballistic Missile Agency (ABMA), the innovative military space missile (and manned space mission) effort spearheaded by the legendary Wernher Von Braun.  All manned spaceflight and space exploration activities were stripped from ABMA and rolled into NASA.

In truth, Schmitt’s recommendations for what to do moving forward aren’t so drastic as they seem.

Indeed, based on a surprising amount of overlap between NASA activities and those of other scientific national agencies and organizations, they make the utmost sense.

Decommissioning NASA According to Schmitt:  A How-To Guide in 6 Easy Steps

  1. Move NASA’s space science activities into/under the National Science Foundation, (including Goddard Space Flight Center and the Jet Propulsion Laboratory.)
  2. Move NASA’s climate and related earth science research into/under the National Oceanic and Atmospheric Administration.  (My extrapolation: physical space science activities should be wrapped into the United States Geological Survey – with emphasis on the Astrogeology Science Center.)
  3. Place NASA’s aeronautical research under the purview of a reconstituted NACA, composed of Langley Research Center, Glenn Research Center, and Dryden Research Center.  (California’s Ames Research Center, Schmitt proposes, is now redundant and should be auctioned off to commercial spaceflight developers.)
  4. Procure spacecraft launch services exclusively from commercial providers, (SpaceX, ULA, etc.)
  5. Retire NASA as an official agency as the International Space Station is de-orbited by 2025.
  6. Have the 2012-President and Congress recognize that a new Cold War exists with China and “surrogates,” and in response create a new National Space Exploration Administration, “charged solely with the human exploration of deep space and the re-establishment and maintenance of American dominance as a space-faring nation.”

A Breakdown of NSEA: Young, Lean, Imaginative

What would NSEA look like specifically?  Schmitt lays out the proposed agency in compelling detail.

NSEA would gain responsibility for Johnson Space Center (for astronaut training, communications, and flight operations), Marshall Space Flight Center (for launch vehicle development), Stennis Space Center (for rocket engine testing), and Kennedy Space Center (for launch operations).

NSEA’s programmatic responsibilities would include robotic precursor exploration as well as lunar and planetary resource identification research, as with the Apollo Program.

Instead of grandfathering the NASA workforce as-is, the new agency according to Schmitt would be almost entirely recomposed and given authority to maintain a youthful workforce – “an average employee age of less than 30.”  Why?  Schmitt claims that, like with Apollo, “Only with the imagination, motivation, stamina, and courage of young engineers, scientists, and managers can NSEA be successful in meeting its Cold War II national security goals.”

(Of note is the fact that during the Apollo program, the average age of mission control personnel was 28.  The average age of NASA employees is now 47.)

Clearing the Legislative Hurtles Before Beginning the Race

With an eye toward the chronic challenges NASA faces due to regularly shifting budget priorities and directives, Schmitt regards that the legislation that creates NSEA would also be required to include a provision that “no new space exploration project can be re-authorized unless its annual appropriations have included a minimum 30% funding reserve for the years up to the project’s critical design review and through the time necessary to complete engineering and operational responses to that review.”

This is a much-needed safety net for the inevitable unknowns that are encountered when designing new spaceflight hardware.

The National Space Exploration Agency Charter

Finally, Schmitt penned a charter for this new space agency, which simply reads:

  • “Provide the People of the United States of America, as national security and economic interests demand, with the necessary infrastructure, entrepreneurial partnerships, and human and robotic operational capability to settle the Moon, utilize lunar resources, explore and settle Mars and other deep space destinations, and, if necessary, divert significant Earth-impacting objects.”

Simple.  To me, this breaks down as four primary directives:  Develop the tech to sustain a human presence off-world.  Utilize extraterrestrial resources.  Stimulate the American economy and imagination while affording us the opportunity to assert space activities as peaceful endeavors.  Develop the ability to protect Earth from NEOs.

I think this is a bold new direction, one which honors the NASA legacy, enables direct, decisive space exploration activities, and streamlines the country’s scientific bureaucracy.

Let’s talk seriously about this.

Semper Exploro.

Advertisements




Xenoarchaeology: Reality and Fantasy

3 05 2012

Archaeological evidence of extraterrestrial involvement with ancient human civilizations, as seen in the movie, “Prometheus.” (Credit: Fox)

Cultural Xenoarchaeology

For reasons I can’t immediately explain, (the recent rash of technical publications addressing the concept of “xenoarchaeology” or “non-terrestrial artifacts” nonwithstanding,) there is a tantalizing idea cropping up in a number of recent and upcoming films and television programs.  (See: Indiana Jones and the Kingdom of the Crystal Skull, Prometheus, Ancient Aliens.)

This concept, simply, involves the discovery of archaic evidence of the existence of Extraterrestrial Intelligence (ETI) and/or evidence of physical interactions of ETI in Earth’s (and mankind’s) past.  All of this, arguably, might be lumped under the auspices of the protoscience Xenoarchaeology.

Perhaps this increase in popular consumption of the idea that aliens have been around longer than we have indicates a mounting social awareness of cosmic deep time and the possibility of extraterrestrial life as it is stirred together with our classic, collective existential questions: “Why are we here?” and, “Are we alone in the universe?”

However, these pop-culture expressions and depictions of xenoarchaeology stray pretty far afield of what “scientific xenoarchaeology” would actually look like.

Separating Xenoarchaeology Fiction from Fact

In most part built upon ideas originally popularized by Erich von Daniken decades ago, (and fictionally by H.P. Lovecraft before him,) these modern concepts invoke the assistance of ETI in the development of human civilization as the “gods” of the religions and mythologies of antiquity.  However, this view has long since been shown by archaeologists to be entirely speculative and lacking in any direct, physical supportive evidence, (i.e., it is pseudoarchaeology.)  This stands in contrast to the physical archaeological evidence that does exist to directly support the idea that we humans created civilization, agriculture, the pyramids, etc., without need of assistance.

While the idea of meddlesome, elder-brother or mentor-type ETI is admittedly thrilling, the concept as it relates to xenoarchaeology does not automatically become scientific and in fact differs significantly from the groundwork currently being laid out for scientific xenoarchaeology.

Allow me to provide a few examples of where reality and fantasy diverge:

  • The practice of much fictional xenoarchaeology takes place on Earth, whereas future scientific xenoarchaeologists will likely find their skills of most utility on other worlds during in situ investigations.
  • Fictional/pseudoscientific xenoarchaeology typically centers on terrestrial features of human civilization, (e.g., pyramids, temples, large-scale geoglyphs,) whereas proposed xenoarchaeological investigations will likely center on extraterrestrial features of a possible artificial nature on other worlds.
  • Fictional xenoarchaeology usually assumes the involvement of ETI with a given feature of interest and works from there, whereas scientific xenoarchaeology will be required to rule out all other natural planetary, biological, and geological possibilities before hypothesizing ETI.  (In fact, ruling out features as xenoarchaeological in nature and disproving those making pseuarchaeological claims will probably be the most frequent uses of the existence of a true, scientific practice of xenoarchaeology.)
  • Xenoarchaeologists of popular fiction conduct investigations with their bare hands, whereas scientific xenoarchaeologists will primarily use remote sensing techniques, (satellites, robotic rovers,) to investigate/collect data.  (Or, if they are very lucky, they might one day even conduct work from within a spacesuit or biological quarantine facility.)
  • Fictional xenoarchaeology attempts to find evidence of ETI in terrestrial archaeological sites or artifacts, whereas scientific xenoarchaeology will rely on the fact that ETI was not involved in terrestrial archaeological sites and artifacts in order to construct relationships and methodologies that will be useful in the evaluation of a potential site of completely alien/unknown character. 

I could go on, but hopefully the potential difference between xenoarchaeological reality and fantasy, (like popular depictions of most sciences,) has been made clear.

Why Xenoarchaeology at All?

When considering the concept of scientific xenoarchaeology, invariably the question arises: “Is there a need for xenoarchaeology as a science at all?” 

Admittedly, this question is a good one.  Pseudoscience aside, there are currently no pressing sites of xenoarchaeological interest.  Why, then, expend the effort?

Well, let me first point you to the established field of astrobiology.  This is a field devoted entirely to the origin, evolution, and possibility of extraterrestrial life.  Associated with the field are multiple related academic journals, societies, and even college degree programs. 

Astrobiology is legitimate.  Yet, we have yet to discover even the smallest extraterrestrial microorganism.  Yes – Astrobiology, the scientific study of alien life, is currently conducted in spite of the complete absence of the known existence of alien life.  The field thrives regardless.  Why?

Astrobiology thrives because its underlying assumptions are viewed to be scientifically sound.  Life occurred on Earth, and considering the pantheon of worlds being discovered around other stars, by all modern physical and biochemical reckoning, signs seem to point that it will only be a matter of time until we discover life elsewhere.  (By similar reasoning, the Search for Extraterrestrial Intelligence [SETI] continues its vigilant watch for technological [radio] signs of life in the galaxy, and few nowadays write off the pursuit as being in vain.)

The assumptions underlying the scientific development of xenoarchaeology are, indeed, indentical to those above.  And further, given the ambiguity of the term “intelligence” and modern knowledge of many cosmic threats that can cause mass extinctions, (novas, gamma-ray bursts, asteroid impacts, etc.,) it seems even more likely that material evidence of extinct extraterrestrial life will be encountered prior to the fortuitious discovery of life itself while it is still alive. 

That is, if I were a gambling man, I would wager that xenoarchaeologists get an opportunity to evaluate ultimately definitive evidence of extraterrestrial life prior to astrobiologists.

Xenoarchaeological Relevance

In the final analysis, popular depictions of xenoarchaeology are useful in that they engender a more sophisticated (if not completely sensationalized) view of our place in the cosmos and the possibility of intelligent life in it.  On the technical side, considering the current absence of evidence of extraterrestrial life, xenoarchaeology as a scientific pursuit is equally justifiable to astrobiology and SETI. 

Further, I would argue that like astrobiology, taking the time to rigorously conceptualize a scientific field tangential to those that exist but centered in an extraterrestrial context will help us see ourselves from a clearer scientific vantage; this will invariably serve to enhance our understanding of terrestrial archaeology, anthropology, biology, and yes, even astrobiology.  (Developing an additional means to address some of the planetary pseudoscience out there, e.g., Martian Cydonia, can’t hurt, either.)

And who knows?  Perhaps our space exploration investigations are only a rover or two away from the discovery of that first Martian or Titanean burrow or petroglyph, which history will remember as a moment that literally changes everything. 

My view is that it’d be far better in the event of such a discovery to be proactive and have scientific xenoarchaeology prepared, (in at least a cursory sense,) instead of being reactive and leaving the scientific establishment scrambling to catch up. 

In this sense, perhaps science could stand to learn a thing or two from Hollywood.





Looking forward to 2012

4 01 2012

Patch text: AD EUNDUM QUO NEMO ANTE IIT - "To boldly go where no one has gone before." (On my frozen-over field bag in the middle of high-desert winter fieldwork.)

At a year’s close, before looking ahead, one can’t help but become a little retrospective.  2011 was a big one for me.

Looking back, this year included a regular fleet of red-letter firsts:

The wheels, as they say, keep turning, and it’ll take me a while to process it all.  However, in the meantime, there’s 2012 to look forward to!  While many claim it to be an ending (of civilization, the world, etc.,) I find that endings only represent new beginnings, and here are a slew of new beginnings we all can look forward to in the coming year:

There are others, and this list is obviously biased, but my point is that in contrast to the drumming of the apocalyptic marketing machine, there is much to look forward to in the coming year that will set the stage for even more exciting events in 2013.

So, let the doomsayers have their fun.  The venturers will have the last laugh.

Cheers to a safe and prosperous 2012!





Room with a (global) view

3 11 2011

When you gaze outside of your spacecraft, what do you see?

What’s it really like to be there?

With the advent of digital photography in the hands of determined astronauts willing to make time to steal moments to snap images like the above, now we can know. 

Have a look.  Blow the image up with a click.  You’re really just sitting there, looking out the window; A perfectly mundane act performed from an extraordinary vantage.

This reality represents (to me, anyway) one of the most inspirational aspects of 21st-century human space exploration: for the first time, the human experience of spaceflight is being not just communicated but also shown to those of us on the planet surface in real-time (via Twitter, for example,) to great effect.

I believe it is the responsibility of those who support and/or are professionally involved in space exploration to promote imagery like the above, for I truly believe it will be via exposure to this media that the next generation of planetary explorers will be engaged to careers in the student-starved sectors of Science, Technology, Engineering, and Mathematics (see: STEM).
 
-And the more ordinary orbital space feels, not only will the goals of work off-world feel attainbale, perhaps the next generation will be even more compelled to see the world as a fragile, interconnected system and seek out the extraordinary in their experiences farther beyond…




NASA exploration goal to be announced

24 05 2011

Artist's concept of anchoring to the surface of an asteroid. (Credit: NASA)

A NASA media advisory released yesterday alerted the world to what may be a landmark announcement later this afternoon.  Specifically, the advisory states that an agency decision has defined the need for a human “deep space” transportation system.

What does this tell us?  Well, if we visit NASA’s exploration website, the first story would have us believe that we’ve decided to adopt Lockheed Martin’s Stepping Stones exploration plan (see previous story here).  -Will the announcement reveal that we’ve committed to venturing to an asteroid?

Check out the streaming audio feed here at 3:30 p.m. EDT today to find out.  (And cross your fingers.)





Yuri’s Semi-Centennial… and other milestones

12 04 2011

Monument of Yuri Gagarin on Cosmonauts Alley in Moscow. (Credit: Anatoly Terentiev)

Today marks the 50th anniversary of human exploration off-world.  Coincidentally, it also marks the 30th anniversary of the inaugural launch of NASA’s Space Shuttle.

Now is a time of transition in many respects; it’s a time of remembrance and of guarded (and sometimes not-so-guarded) excitement.  The Space Shuttle is retiring, the International Space Station is complete, the first commercial orbital transportation ventures have successfully flown and recovered spacecraft, and an armada of suborbital spacecraft are on deck to begin getting us off the rock.

So, with many celebrations occurring worldwide, I raise my glass in kind:

Here’s to those that have shown us the way and to what is yet to come.

May the wind be at our backs.





Following Lockheed Martin’s “Stepping Stones” to Mars

27 03 2011

Diagram and timeline of Lockheed Martin's incremental "Stepping Stones" proposal. (Credit: Lockheed Martin)

The wake of the cancellation of NASA’s Constellation Program has been devastating to Lockheed Martin’s Orion spacecraft plans.  They had been counting on the subsequently-canceled Ares series of rockets to loft Orion to the International Space Station (ISS) as a replacement for the retiring Space Shuttle, with eventual plans as the command module for future manned exploration of the Moon and Mars.

After emerging from beneath the Obama administration’s scalpel, (one that admittedly may have simultaneously opened a new channel for commercial space exploration,) all that remains of this once mighty program is the go-ahead to leverage the Orion testing already done so that a stripped-down version might be utilized as an ISS lifeboat.

A mockup of the Orion spacecraft docking with the International Space Station in Lockheed's new Space Operations Simulation Center. (Credit: Lockheed Martin)

However, instead of licking their wounds, it appears that Lockheed Martin has wasted no time in capitalizing on their salvaged Orion spacecraft-as-lifeboat.  First, they’ve recently unveiled a new facility designed for full-scale testing and integration of Orion with spaceflight hardware, called the Space Operations Simulation Center.

Secondly, and perhaps more intriguingly, they’ve release a document called “Stepping Stones,” which is a Lockheed Martin proposed scenario that includes a timetable for incremental missions from Low Earth Orbit to an eventual exploration of a moon of Mars (see image above).

Using tried techniques, the outline builds on their previously-released Plymouth Rock scenario and includes an earlier mission to repair the Hubble Space Telescope, a subsequent mission to the Lagrangian Point over the far side of the moon, a more distant asteroid rendezvous mission, and finally a mission to the moons of Mars, enabling astronauts to control robotic rovers on the Martian surface in real time.

Aside from the fact that logistically, scientifically, economically, and technologically there are very good reasons to visit asteroids, even the final objective sets very technologically realistic goals.  By not shooting to put boots on Mars to begin with, their very savvy scenario bypasses the need to utilize the risky, untried hardware that would be necessary to make a powered landing on the Martian surface and blast off again (presumably to a Martian-Orbit-Rendezvous) before heading back home.

I sincerely hope someone with vision and budget authority picks up this proposal – it’s a serious plan that continues to grow our experience and knowledge base by visiting (and mastering travel to-and-from) new destinations while minimizing risk.

With Stepping Stones, I think we’re looking at the future of manned space exploration.








%d bloggers like this: