The Science Behind “America Declassified” – White Sands

6 12 2013

IMG_4250

Unintended Consequences

My adventures as a scientist-host with the Travel Channel television series, “America Declassified” took me across the blinding flats of the White Sands Missile Range, which had unintended consequences.  Unnervingly, it deposited a sliver in my mind that I simply cannot ignore.

In forging outward across the staggeringly-immense, derelict runways we now know as White Sands Space Harbor, witnessing firsthand the contrast between what had until so recently been a fully-functional spaceport and today’s blatantly inhospitable reality, I was left with a persistent awareness of a haunting, obscure truth:

Ours is a civilization that is mature (and immature?) enough to have developed space travel technology… and then completely let it go.

Space Shuttle Columbia's landing at White Sands concluding STS-3 in March, 1982.

Space Shuttle Columbia’s landing at White Sands concluding STS-3 in March, 1982.

Sifting the Future Past

This disturbing truth, revealed to me as we barreled across the slow-motion avalanche of selenite crystals relentlessly erasing the spaceport from existence, is that from this moment onward the science of studying humanity’s artifacts – archaeology – will include not just arrowheads and pottery, but also advanced spaceflight technology.

Could it be that we have reached an era where we – due to social, political, or economic difficulties – actually regress technologically?  A time where what we currently achieve is less advanced than what we achieved in the past?

It is here that we venture headlong into the little-known, frontier science of Space Archaeology.

Close-up, showing the intense degradation of the runway markings.

Close-up, showing the intense degradation of the runway markings.

Archaeology at the Final Frontier

Beyond the obvious, the study of historical space technology also includes places like White Sands Space Harbor.  The facility boasted several features unique to human history, like runways that were flat, long, and wide enough to be used to train people to land vehicles returning from space, or the fact that they were marked in such a way that they could be seen by human pilots reentering the Earth’s atmosphere at nearly 18,000 miles-per-hour, or speeds greater than Mach 23(!).

Admittedly, this concept of archaeology runs contrary to our popular view of archaeologists.  It seems difficult, for instance, to envision Indiana Jones racing against the clock to retrieve a turbo-cryo-pump from an abandoned rocket testing facility before it is demolished, or diving to the bottom of the ocean to rescue a historic rocket engine before it rusts to pieces… Yet, that’s exactly what a select few scientists are attempting as I type.

Travel Channel’s Citizen Science-Explorers

In the final analysis, it could very well be that viewers who share in this segment’s exploration of modern lore, tromping off the beaten path with me onto restricted territory at White Sands, were themselves briefly transformed into citizen space archaeologists.

-And in this light, we might all unwittingly serve a very important role through the lens of history – to help ensure that while spaceflight technology might indeed be lost to the sands of time, it will never be completely forgotten.

Semper Exploro – Always Explore!

Ben McGee

Advertisements




Room with a (global) view

3 11 2011

When you gaze outside of your spacecraft, what do you see?

What’s it really like to be there?

With the advent of digital photography in the hands of determined astronauts willing to make time to steal moments to snap images like the above, now we can know. 

Have a look.  Blow the image up with a click.  You’re really just sitting there, looking out the window; A perfectly mundane act performed from an extraordinary vantage.

This reality represents (to me, anyway) one of the most inspirational aspects of 21st-century human space exploration: for the first time, the human experience of spaceflight is being not just communicated but also shown to those of us on the planet surface in real-time (via Twitter, for example,) to great effect.

I believe it is the responsibility of those who support and/or are professionally involved in space exploration to promote imagery like the above, for I truly believe it will be via exposure to this media that the next generation of planetary explorers will be engaged to careers in the student-starved sectors of Science, Technology, Engineering, and Mathematics (see: STEM).
 
-And the more ordinary orbital space feels, not only will the goals of work off-world feel attainbale, perhaps the next generation will be even more compelled to see the world as a fragile, interconnected system and seek out the extraordinary in their experiences farther beyond…




Plans afoot for snaring a space rock

2 10 2011

Trajectory of 2008EA9 before and after orbit maneuver. (Credit: Hexi et al., 2011)

Researchers at the Tsinghua University in Beijing recently published a plan just daring enough to work/make people nervous.

After an extensive review of the orbits of thousands of candidate near-Earth objects, the research team headed by Associate Professor Baoyin Hexi identified a small asteroid that with a nudge at the opportune moment would settle into a temporary Earth orbit.

The 410-meter-per-second-boost required to snare 30-foot-wide asteroid 2008EA9 is but a fraction of the propulsion cost required, for instance, for our spacecraft to get to low Earth orbit, (8,000 meters-per-second).

Attempting such a technical feat would be a boon for space logistics and exploration research by providing a simple, local target for investigation by astronauts.  Further, the experience would exponentially improve our asteroid diversion know-how and spur the development of space resource/mining techniques.

Despite the terror-stoking hype that any asteroid-grab project is bound to inspire, the risks in this case are relatively low: few realize that asteroids of similar size (5-10 meters in diameter) hit the Earth’s atmosphere annually.  While still packing the punch of an mid-twentieth century atom-bomb, these objects are small enough to vaporize in the upper atmosphere, and typically no one is the wiser for it.

I say let’s go for it.  Any eccentric, research-minded philanthropists want to drop a fortune on lassoing a giant lump of primordial solar system?





Summer Hits: Martian Water, Asteroid Nukes, Orbital Antimatter!

1 10 2011

Here’s a recap of some of this summer’s greatest hits in space news that you might have missed:

Water on Mars

Dark streaks as summer flow features in Newton Crater, Mars. (Credit: NASA)

In an utterly tantalizing development, scientists analyzing imagery from the Mars Reconnaissance Orbiter (MRO) have announced what appears for all the world to be direct evidence of water on Mars!

Because the MRO has been orbiting the Red Planet since 2006, it has been able to view the same portions of the world at different times of year with an eye toward spotting any potential seasonal changes.  This past August, the MRO team reviewing this growing dataset hit paydirt.

Specifically, the team identified dark streaks on the slopes of steep terrain in the southern hemisphere that are found during Martian spring and summer; these features disappear during Martian winter only to return once again the following spring.

While there are multiple possible explanations, the most likely amongst them appears to be the flow of briny (salty) groundwater that warms in the hotter months, breaches the surface, and evaporates/sublimates as it flows downhill.

Time will tell on this one, but all eyes should be on the possibility of subsurface briny Martian aquifers!

Russian “Armageddon”

Asteroid impact as depicted in the film "Deep Impact." (Credit: Paramount/Dreamworks)

This past August, Russian scientists took a note from Hollywood and seriously proposed the use of nuclear weapons as a means of asteroid mitigation.

Under the scenario, a dual-spacecraft architecture would be employed, with one spacecraft, called “Trap,” ferrying a nuclear warhead to the target while a second spacecraft, “Kaissa,” (apparently and intriguingly named after the mythical goddess of chess,) analyzes the target asteroid’s composition to determine the appropriate warhead use scenario (deflection vs. break-up).

The spacecraft would be lofted by a Soyuz-2 rocket and/or Russia’s upcoming Rus-M rocket.

While much contemporary research casts doubt on the ultimate effectiveness of a nuclear detonation in such a context, the proposers stressed that the technique would only be used on approaching objects up to 600 yards in diameter.

Orbital Antimatter Belt

Antiprotons trapped in the Earth's magnetic field (in pink). (Credit: Aaron Kaase/NASA/Goddard)

Also this past August, researchers published a stunning (but in retrospect, sensible) discovery in Astrophysical Journal Letters: Earth possess a natural orbiting belt of concentrated antiprotons.

Succinctly, the interactions of high-energy cosmic radiation with the Earth’s atmosphere can produce infinitesimal and ordinarily short-lived bursts of antimatter.  These antiparticles normally react with standard matter present around the Earth and annihilate.

However, in the near-vacuum of space beyond the bulk of the Earth’s atmosphere, some of these antimatter particles are spared immediate destruction.  Many of these antiprotons are then herded by the Earth’s magnetic field into bands or belts, which were recently discovered by the antimatter-hunting satellite PAMELA.

Aside from the “gee-whiz” factor, there are certain technical and economic reasons to get excited about the finding.  For starters, the energy density of antiprotons is on the order of a billion times greater than conventional chemical batteries.  However, at a current production cost on Earth of nearly $63 trillion per gram, antiprotons are a bit hard to come by and even less practical to use for anything other than research; Identifying a natural reservoir such as, say, a naturally-produced orbiting belt could open up additional avenues of use for antimatter as well as be immensely lucrative… if only one could solve the lightning-in-a-bottle problem of antimatter storage.

In any case, this is definitely something to keep an eye on.  For the less techno-jargon-inclined, news reports on the find may be found from the BBC as well as Science Magazine.





Japanese lunar light farming

1 06 2011

Rendering of a solar array ring on the Moon's surface. (Credit: Shimizu Corporation)

Definition of mixed emotions: Reading an ambitious plan recently released by the Shimizu Corporation of Japan that effectively wields fear of radiation to incentivize lunar colonization for solar power generation. 

Wow.  While I abhor anything that preys upon the irrational fear of nuclear energy, I’m all for the use of solar power.  (I’d like to make the ironic point here that “solar power” is also nuclear energy – the result of a giant nuclear fusion reactor, albeit a natural one.)  I’m also certainly for anything that makes an extraterrestrial business case, and I further endorse any plan that leads us off-world so that we can begin developing the practical know-how to live there.  Throw in the fact that the endeavor would ease stress on the terrestrial ecosystem at the same time, and the idea seems like a home run.

Diagram depicting the lunar power delivery process. (Credit: Shimizu Corporation)

How does it work?  Quite simply.  Called the LUNA RING, solar arrays are to be installed across the lunar surface in an equatorial belt.  Panels on the sun-facing side of the Moon then deliver energy via circumferential transmission lines to laser and microwave transmitters on the Earth-facing side.  These transmitters then beam the energy to receiving stations on the Earth, providing power enough for all.

Sound too good to be true?  Well, it may be.  The problem, like many great ideas, is funding.  The technology is all but completely available to make an attempt, but the capital costs here are incomprehensible.  Yet-to-be-invented tele-robotics plays a major role in construction, (which as I’ve previously mentioned is a very smart move,) and when weighed in combination with untried lunar transport, operations, and manufacturing techniques, equates to a seriously steep R&D curve.

However, this sort of distance planning can demonstrate that the basic elements already exist, which may be exactly what we need to convince  governments and the power industry that the venture is possible.  And, if Japan suddenly puts the economic weight of the government behind a plan like this, e.g., by making a call to return to the Moon and by actually launching small-scale versions of this system, then we should all take note… and I believe we should all participate.

The International Space Station is an endeavor that has and will continue to benefit many.  An international effort to establish renewable lunar-terrestrial power production can benefit everyone, both immediately as well as by developing the skills we’ll need to expand into the cosmos.

Good on ya’, Shimizu Corporation, for thinking big.  Hopefully it’ll catch on.





NASA exploration goal to be announced

24 05 2011

Artist's concept of anchoring to the surface of an asteroid. (Credit: NASA)

A NASA media advisory released yesterday alerted the world to what may be a landmark announcement later this afternoon.  Specifically, the advisory states that an agency decision has defined the need for a human “deep space” transportation system.

What does this tell us?  Well, if we visit NASA’s exploration website, the first story would have us believe that we’ve decided to adopt Lockheed Martin’s Stepping Stones exploration plan (see previous story here).  -Will the announcement reveal that we’ve committed to venturing to an asteroid?

Check out the streaming audio feed here at 3:30 p.m. EDT today to find out.  (And cross your fingers.)





Finding the incentive to settle space…

19 05 2011

To many, the outward expansion of humanity into the cosmos is inevitable.  It seems that a portion of our population is (and has always been) innately possessed of a drive toward the frontier, wherever that might be at the time… 

The Antarctic exploration ship Endurance locked in ice, 1915. (Credit: The Royal Collection/2009 Her Majesty Queen Elizabeth II)

Whether venturing to the New World, exploring the farthest reaches of the Earth’s poles, probing the abyssal oceanic depths, or rocketing our way to the Moon – there have always been people who have emerged with the deep-seated desire to expand our horizons.  The exercise reaps clear benefits to our cultures, our societies, and our knowledge of the universe at large, and some part of our ancient psyche knows it.  As Johannes Kepler eloquently put it (nearly four centuries ago!):

“When ships to sail the void between the stars have been invented there will also be men who come forward to sail those ships.”

Clearly, the problem with exploration hasn’t historically been finding the desire to explore.  It’s been finding the commercial incentive. 

Human exploration is necessarily expensive; by definition it is  set away from convenience, requiring feats of transportation and logistics no matter the era.  Even more than survival on the frontier, history has shown that convincing financiers that the endeavor is a worthwhile (and often, also potentially lucrative) one has been an explorer’s paramount challenge.

So sits the human exploration of space today – idling on the runway.  Technologically, we are capable of venturing outward, well beyond the Earth.  Many of the risks of the space environment are now (at least partially) known, and we’ve nearly completed the first-order exploration of all of the major bodies of the Solar System. 

We’re ready to start getting out there.  We just need to find an economically-compelling reason to get out there.

Space tourism will help further the technology needed to expand our footprint into space, but such trips will be initially limited to those seeking largely intangible returns.  And, while there are fairly obvious economic and environmental benefits to utilizing extraterrestrial resources, we lack the infrastructure to justify the incredible expense of making a practical go of it.  We need something with a narrower field of view – something to help us build the first waystations that will open the doors to commerce off-world.

As it so happens, the space policy think tank Space Settlement Institute has developed such a plan.  -And it just might work.  Called the “Space Settlement Initiative,” it floats the idea (so-to-speak) of turning percieved international space law on its head by challenging the U.S. Congress to recognize the ownership of land on the Moon and Mars (or any other extraterrestrial body) by those who “settle” it (read: physically visit and claim).  This ownership, in turn, could be bought and sold on Earth.

View of the Taurus-Littrow Apollo 17 landing site, 7-19 Dec. 1972. (Credit: NASA)

Suddenly, extraterrestrial commerce is in full swing, with lunar and Martian land being optioned, sold, and traded just as mineral rights attached to land a person has never seen are regularly incorporated into his or her investment portfolio.  Now, the business model for building the initial waystations and transportation systems to Low Earth Orbit, Lunar Orbit, and the lunar surface is baited with the very real return of saleable physical property.

Various uses have been proposed for extraterrestrial land, from ecosystem lifeboats and knowledge repositories to low-gravity retirement communities.  Were the Space Settlement Institute’s plan to be adopted and a pioneer to venture out and stake a claim, each of these uses would suddenly have potentially real locations with a demonstrated means of transportation.

-And as we know, it’s a short period of time between when new locations show up on our maps and when we find a way to reach them.

I’m totally jazzed by this idea.  It seems to me that all the plan needs in order to gain traction is steady promotion to Congressional leaders, policy-makers, potential venture capitalists, and the public.  Who knows?  If they’re right, perhaps the next Rockefeller will be made in the pursuit of lunar real-estate. 

Food for thought.








%d bloggers like this: